Browse > Article
http://dx.doi.org/10.14191/Atmos.2016.26.3.473

Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact  

Lee, Doo-Il (Department of Atmospheric Science, Kongju National University)
Lee, Jae-Hyeong (Department of Atmospheric Science, Kongju National University)
Lee, Sang-Hyun (Department of Atmospheric Science, Kongju National University)
Publication Information
Atmosphere / v.26, no.3, 2016 , pp. 473-482 More about this Journal
Abstract
An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.
Keywords
Coordinate transformation; double rotation; eddy covariance; heterogeneous urban surface; planar fit;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Velasco, E., and Coauthors, 2009: Eddy covariance flux measurements of pollutant gases in urban Mexico City. Atmos. Chem. Phys., 9, 7325-7342, doi:10.5194/acp-9-7325-2009.   DOI
2 Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512-526, doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.   DOI
3 Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurement for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85-100, doi:10.1002/qj.49710644707.   DOI
4 Wilczak, J. M., S. P. Oncley, and S. A. Sage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127-150.   DOI
5 Yuan, R., M. Kang, S. Park, J. Hong, D. Lee, and J. Kim, 2007: The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment. Korean J. Agri. Forest Meteor., 9, 100-108.   DOI
6 Yuan, R., M. Kang, S.-B. Park, J. Hong, D. Lee, and J. Kim, 2011: Expansion of the planar-fit method to estimate flux over complex terrain. Meteorol. Atmos. Phys., 110, 123-133, doi:10.1007/s00703-010-0113-9.   DOI
7 Zeweldi, D. A., M. Gebremichael, J. Wang, T. Sammis, J. Kleissl, and D. Miller, 2010: Intercomparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: field experiment over a heterogeneous semi-arid region. Bound.-Layer Meteor., 135, 151-159, doi:10.1007/s/10546-009-9460-9.   DOI
8 Baldocchi, D. D., and Coauthors, 2001: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem- scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415- 2434, doi:10.1175/1520-0477.   DOI
9 Aubinet, M., T. Vesala, and D. Papale, Eds., 2012: Eddy covariance: a practical guide to measurement and data analysis. Springer, 438 pp.
10 Baldocchi, D. D., B. B. Hincks, and T. P. Meyers, 1998: Measuring biosphere-atmosphere exchange of biologically related gasses with micrometeorological methods. Ecology, 69, 1331-1340.
11 Foken, T., and B. Wichura, 1996: Tools for quality assessment of surface-based flux measurements. Agric. For. Meteor., 78, 83-105.   DOI
12 Foken, T., M. Göckede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, 2004: Post-field data quality control. Handbook of Micrometeorology, W. Lee, W. Massman, and B. E. Law, Eds., Kluwer Academic Publishers, 181-208.
13 Kim, S., Y.-H. Lee, K. R. Kim, and Y.-S. Park, 2014: Analysis of surface energy balance closure over heterogeneous surfaces. Asia-Pac. J. Atmos. Sci., 50, 553-565, doi:10.1007/s13143-014-0045-2.   DOI
14 Grimmond, C. B. S., J. A. Salmond, T. R. Oke, B. Offerle, and A. Lemonsu, 2004: Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res., 109, D24, doi:10.1029/2004JD004936.   DOI
15 Hong, J., and J. Kim, 2002: On processing raw data from micrometeorological field experiments. Korean J. Agri. Forest Meteor., 4, 119-126.
16 Jarvi, L., U. Rannik, I. Mammarella, A. Sogachev, P. P. Aalto, P. Keronen, E. Siivola, M. Kulmala, and T. Vesala, 2009: Annual particle flux observations over a heterogeneous urban area. Atmos. Chem. Phys., 9, 7847-7856.   DOI
17 Kotthaus, S., and C. S. B. Grimmond, 2014: Energy exchange in a dense urban environment-Part I: Temporal variability of long-term observations in central London. Urban Climate, 10, 261-280, doi:10.1016/ j.uclim.2013.10.002.   DOI
18 Lee, X., W. J. Massman, and B. Law, Eds., 2004: Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, 250 pp.
19 Lee, S.-H., 2015a: LAS-derived determination of surfacelayer sensible heat flux over a heterogeneous urban area. Atmosphere, 25, 193-203 (in Korean with English abstract).   DOI
20 Lee, S.-H., J.-H. Lee, and B.-Y. Kim, 2015: Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer. Adv. Atmos. Sci., 32, 1092-1105, doi:10. 1007/s00376-015-4236-2.   DOI
21 Lee, Y.-H., 2015b: Characteristics of wind direction shear and momentum fluxes within roughness sublayer over sloping terrain. Atmosphere, 25, 591-600 (in Korean with English abstract).   DOI
22 Mestayer, P., and Coauthors, 2005: The urban boundary layer field experiment over Marseille UBL/CLUESCOMPTE: experimental set-up and first results. Bound.-Layer Meteor., 114, 315-365.   DOI
23 Lee, Y.-H., B. Lee, K. Kahng, S.-J. Kim, and S.-O. Hong, 2013: Quality control and characteristic of eddy covariance data in the region of Nakdong river. Atmosphere, 23, 307-320 (in Korean with English abstract).   DOI
24 Li, M., W. Babel, K. Tanaka, and T. Foken, 2013: Note on the application of planar-fit rotation for non-omnidirectional sonic anemometers. Atmos. Meas. Tech., 6, 221-229, doi:10.5194/amt-6-221-2013.   DOI
25 McMillen, R. T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Bound.- Layer Meteor., 43, 231-245.   DOI
26 Schmid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle, and H.-H. Su, 2000: Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric. Forest Meteorol., 103, 357-374.   DOI
27 Park, S.-J., T.-J. Choi, and S.-J. Kim, 2013: Heat flux variations over sea ice observed at the coastal area of the Sejong station, Antarctica. Asia-Pac. J. Atmos. Sci., 49, 443-450, doi:10.1007/s13143-013-0040-z.   DOI
28 Ross, A. N., and E. R. Grant, 2015: A new continuous planar fit method for calculating fluxes in complex forested terrain. Atmos. Sci. Let., 16, 445-452, doi:10.1002/asl.580.   DOI
29 Ruppert, J., M. Mauder, C. Thomas, and J. Luers, 2006: Innovative gapfilling strategy for annual sums of $CO_2$ net ecosystem exchange. Agric. Forest Meteorol., 138, 5-18.   DOI
30 Shimizu, T., 2015: Effect of coordinate rotation systems on calculated fluxes over a forest in complex terrain: a comprehensive comparison. Bound.-Layer Meteor., 156, 277-301, doi:10.1007/s10546-015-0027-7.   DOI
31 Tsukamoto, O., and F. Kondo, 2008: Experimental validation of the Webb correction for $CO_2$ flux with an open-path gas analyzer. 18th Symposium on Boundary Layers and Turbulence, Stockholm University, 5 pp.
32 Sun, J., 2007: Tilt corrections over complex terrain and their implication for $CO_2$ transport. Bound.-Layer Meteor., 124, 143-159, doi:10.1007/s10546-007-9186-5.   DOI
33 Tanner, C. B., and G. W. Thurtell, 1969: Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer. Research and Development Technical Report ECOM 66-G22-F to the US Army Electronics Command, 200 pp.