• Title/Summary/Keyword: Ectopic expression

Search Result 170, Processing Time 0.027 seconds

Current Progress and Prospects of Reprogramming Factors - Stem Cells vs Germ Cells - (줄기세포와 생식세포에서 리프로그래밍 인자에 대한 최근 연구 동향과 전망)

  • Seo, You-Mi;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2010
  • Recently induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of several transcription factors (reprogramming factors) using technology of somatic cell reprogramming. iPS cells are able to selfrenew and differentiate into all type of cells in the body similarly to embryonic stem cells. Because iPS cells have advantages that can avoid immune rejection after transplantation and ethical issues unlike embryonic stem cells, research on iPS has made significant progress since the first report by Yamanaka in 2006. Nevertheless of many advantages of iPS, safer methods to introduce reprogramming factors into somatic cells must be developed due to safety concerns regarding viral vectors, and safer reprogramming factors to substitute the oncogenes should be evaluated for clinical application of iPS. Here we discuss the recent progress in reprogramming factors in embryonic stem cells, oocytes, and embryos, and discuss further research for finding new, more reliable and safer reprogramming factors.

Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

  • Lim, Hyoun-Sub;Lee, Mi Yeon;Moon, Jae Sun;Moon, Jung-Kyung;Yu, Yong-Man;Cho, In Sook;Bae, Hanhong;DeBoer, Matt;Ju, Hojong;Hammond, John;Jackson, Andrew O.
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.17-30
    • /
    • 2013
  • Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treat-ments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

cAMP-response Element-binding Protein Is not Essential for Osteoclastogenesis Induced by Receptor Activator of NF-${\kappa}B$ Ligand

  • Kim, Ha-Neui;Ha, Hyun-Il;Lee, Jong-Ho;Kwak, Han-Bok;Kim, Hong-Hee;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.30 no.4
    • /
    • pp.143-148
    • /
    • 2005
  • Osteoclasts are multinucleated cells with bone resorbing activity and differentiated from hematopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and M-CSF. However, the exact molecular mechanisms through which RANKL stimulates osteoclastogenesis remain to be elucidated. Here we report that activation of cAMP-response elementbinding protein (CREB) is not involved in osteoclastogenesis from osteoclast precursors in response to RANKL. RANKL induced CREB activation in osteoclast precursors. Using pharmacological inhibitors, we found that RANKL-induced CREB activation is dependent on p38 MAPK pathways. We also found that ectopic expressions of wild type and dominant negative forms of CREB in osteoclast precursors did not affect RANKL-induced osteoclast formation and bone resorbing activity. Furthermore, dominant negative forms of CREB did not alter the expression levels of osteoclast-specific marker genes. Taken together, these data suggest that CREB is dispensable for differentiation and resorbing activity of osteoclasts.

Ectopic Expression of a Cold-Responsive OsAsr1 cDNA Gives Enhanced Cold Tolerance in Transgenic Rice Plants

  • Kim, Soo-Jin;Lee, Sang-Choon;Hong, Soon Kwan;An, Kyungsook;An, Gynheung;Kim, Seong-Ryong
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.449-458
    • /
    • 2009
  • The OsAsr1 cDNA clone was isolated from a cDNA library prepared from developing seed coats of rice (Oryza sativa L.). Low-temperature stress increased mRNA levels of OsAsr1 in both vegetative and reproductive organs. In situ analysis showed that OsAsr1 transcript was preferentially accumulated in the leaf mesophyll tissues and parenchyma cells of the palea and lemma. For transgenic rice plants that over-expressed full-length OsAsr1 cDNA in the sense orientation, the Fv/Fm values for photosynthetic efficiency were about 2-fold higher than those of wild type-segregating plants after a 24-h cold treatment. Seedlings exposed to prolonged low temperatures were more tolerant of cold stress, as demonstrated during wilting and regrowth tests. Interestingly, OsAsr1 was highly expressed in transgenic rice plants expressing the C-repeat/dehyhdration responsive element binding factor 1 (CBF1), suggesting the regulation of OsAsr1 by CBF1. Taken together, we suggest that OsAsr1 gene play an important role during temperature stress, and that this gene can be used for generating plants with enhanced cold tolerance.

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells

  • Choi, Won-Young;Hwang, Ji-Hyun;Cho, Ann-Na;Lee, Andrew J.;Jung, Inkyung;Cho, Seung-Woo;Kim, Lark Kyun;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1011-1022
    • /
    • 2020
  • Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.

Korean Red Ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model

  • Song, Heewon;Won, Ji Eun;Lee, Jeonggeun;Han, Hee Dong;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.592-600
    • /
    • 2022
  • Background: Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods: RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-kB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results: According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions: Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.

THE EFFECT OF BMP REGULATED SMAD PROTEIN ON ALKALINE PHOSPHATASE GENE EXPRESSION (Smad에 의한 alkaline phosphatase 유전자의 발현 조절기전)

  • Kim, Nan-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2001
  • Bone morphogenetic proteins(BMPs), members of the transforming growth factor $\beta$(TGF-$\beta$) superfamily were first identified as the factors that induce ectopic bone formation in vivo, when implanted into muscular tissue. Especially BMP-2 inhibits terminal differentiation of C2C12 myoblasts and converts them into osteoblast lineage cells. In the molecular mechanism of the signal transduction of TGF-$\beta$ and related factors, intracellular signaling proteins were identified as Smad. In previous study, it has been reported that Smad 1 and Smad 5, which belong to the R-Smad family mediate BMP signaling, were involved in the induction of osteoblast differentiation in C2C12 cells. To understnad the role of Smads involved in osteogenic transdifferentiation in C2C12 cell, in present study, after we stably transfected C2C12 cells with each. Smad(Smad 1,Smad 5) expression vector, cultured for 3 days and stained for alkaline phophatase activity. ALP activity positive cells appeared in the Smad 1, Smad 5 stably transfected cell even in the abscence of BMP. After transiently co-transfected C2C12 cells with each Smad expression vector and ALP promoter, it was examined that Smad 1 and Smad 5 expression vector had increased about 2 fold ALP promoter activity in the abscence of BMP. These result suggested that both Smad 1 and Smad 5 were involved in the intracellular BMP signals which induce osteoblast differentiation in C2C12 cells. The effect of BMP on C2C12 cells with Smad 1, Smad 5 transfected were studied by using northern blot analysis. the treatment of BMP upregulated ALP mRNA level in three groups, especially upregulation of ALP was larger in Smad 1, Smad 5 transfected cell than control group. Pretreatment with cycloheximide($10{\mu}g/ml$), a protein synthesis inhibitor resulted in blocking the ALP gene expression even in BMP(100ng/ml) treated cell. These results suggested that Smad increased the level of ALP mRNA via the synthesis of a certain transcriptional regulatory protein.

  • PDF

Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene (오이모자이크바이러스 2b 유전자 발현 담배의 형태 및 전사체 분석)

  • Sohn, Seong-Han;Kim, Yoon-Hee;Ahn, Yul-Kyun;Kim, Do-Sun;Won, So-Yoon;Kim, Jung-Sun;Choi, Hong-Soo
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 2015
  • Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS). To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG) comparing with wild-type. Eight lines of transgenic plants ($T_0$) were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

Functional Screening of Plant Genes Suppressed Salt Sensitive Phenotype of Calcineurin Deficient Mutant through Yeast Complementation Analysis (애기장대의 염해 저항성 관련 유전자의 기능적 선별)

  • Moon, Seok-Jun;Park, Soo-Kwon;Hwang, Un-Ha;Lee, Jong-Hee;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo;Shin, Dongjin
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Understanding salt tolerance mechanisms is important for the increase of crop yields, and so, several screening approaches were developed to identify plant genes which are involved in salt tolerance of plants. Here, we transformed the Arabidopsis cDNA library into a salt-sensitive calcineurin (CaN)-deficient ($cnb{\Delta}$) yeast mutant and isolated the colonies which can suppress salt-sensitive phenotype of $cnb{\Delta}$ mutant. Through this functional complementation screen, a total of 34 colonies functionally suppressed the salt-sensitive phenotype of $cnb{\Delta}$ yeast cells, and sequencing analysis revealed that these are 9 genes, including CaS, AtSUMO1 and AtHB-12. Among these genes, the ectopic expression of CaS gene increased salt tolerance in yeast, and CaS transcript was up-regulated under high salinity conditions. CaS-antisense transgenic plants showed reduced root elongation under 100 mM NaCl treatment compared to the wild type plant, which survived under 150 mM NaCl treatment, whereas CaS-antisense transgenic plant leaves turned yellow under 150 mM NaCl treatment. These results indicate that the expression of CaS gene is important for stress tolerance in yeast and plants.

Identification and analysis of microRNAs in Candida albicans (Candida albicans의 마이크로RNA 동정과 분석)

  • Cho, Jin-Hyun;Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1494-1499
    • /
    • 2017
  • Oral infection due to Candida albicans is a widely recognized and frequent cause of superficial infections of the oral mucosa (oral candidiasis). Although oral candidiasis is not a life-threatening fungemia, it can cause severe problems in individuals under certain conditions. MicroRNAs (miRNAs) are noncoding, small RNA molecules, which regulate the expression of other genes by inhibiting the translation of target mRNAs. The present study was designed to identify miRNAs in C. albicans and determine their possible roles in this organism. miRNA-sized small RNAs (msRNAs) were cloned in C. albicans by deep sequencing, and their secondary structures were analyzed. All the cloned msRNAs satisfied conditions required to qualify them as miRNAs. Bioinformatics analysis revealed that two of the most highly expressed C. albicans msRNAs, Ca-363 and Ca-2019, were located in the 3' untranslated region of the corticosteroid-binding protein 1 (CBP1) gene in a reverse orientation. miRNA mimics were transformed into C. albicans to investigate their RNA-inhibitory functions. RNA oligonucleotide-transformed C. albicans was then observed by fluorescent microscopy. Quantitative PCR analysis showed that these msRNAs did not inhibit CBP1 gene expression 4 hr and 8 hr after ectopic miRNA transformation. These results suggest that msRNAs in C. albicans possess an miRNA-triggered RNA interference gene-silencing function, which is distinct from that exhibited by other eukaryotic systems.