Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0207

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells  

Choi, Won-Young (Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University)
Hwang, Ji-Hyun (Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University)
Cho, Ann-Na (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Lee, Andrew J. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Jung, Inkyung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Cho, Seung-Woo (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Kim, Lark Kyun (Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine)
Kim, Young-Joon (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Abstract
Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.
Keywords
chromatin accessibility; Hi-C; induced pluripotent stem cell; NEUROD1; neuronal progenitor cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, G., Gulbranson, D.R., Hou, Z., Bolin, J.M., Ruotti, V., Probasco, M.D., Smuga-Otto, K., Howden, S.E., Diol, N.R., Propson, N.E., et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424-429.   DOI
2 Forrest, M.P., Zhang, H., Moy, W., McGowan, H., Leites, C., Dionisio, L.E., Xu, Z., Shi, J., Sanders, A.R., Greenleaf, W.J., et al. (2017). Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21, 305-318.e8.   DOI
3 Frank, C.L., Liu, F., Wijayatunge, R., Song, L.Y., Biegler, M.T., Yang, M.G., Vockley, C.M., Safi, A., Gersbach, C.A., Crawford, G.E., et al. (2015). Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat. Neurosci. 18, 647-656.   DOI
4 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589.   DOI
5 Higuchi, A., Kao, S.H., Ling, Q.D., Chen, Y.M., Li, H.F., Alarfaj, A.A., Munusamy, M.A., Murugan, K., Chang, S.C., Lee, H.C., et al. (2015). Longterm xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci. Rep. 5, 18136.   DOI
6 Honkaniemi, J. and Sharp, F.R. (1999). Prolonged expression of zinc finger immediate-early gene mRNAs and decreased protein synthesis following kainic acid induced seizures. Eur. J. Neurosci. 11, 10-17.   DOI
7 Jin, Y., Lee, J.U., Chung, E., Yang, K., Kim, J., Kim, J.W., Lee, J.S., Cho, A.N., Oh, T., Lee, J.H., et al. (2019). Magnetic Control of axon navigation in reprogrammed neurons. Nano Lett. 19, 6517-6523.   DOI
8 Kang, S., Chen, X., Gong, S., Yu, P., Yau, S., Su, Z., Zhou, L., Yu, J., Pan, G., and Shi, L. (2017). Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci. Rep. 7, 12233.   DOI
9 Pataskar, A., Jung, J., Smialowski, P., Noack, F., Calegari, F., Straub, T., and Tiwari, V.K. (2016). NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J. 35, 24-45.   DOI
10 Philippidou, P. and Dasen, J.S. (2013). Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80, 12-34.   DOI
11 Qian, L., Berry, E.C., Fu, J.D., Ieda, M., and Srivastava, D. (2013). Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat. Protoc. 8, 1204-1215.   DOI
12 Qin, Z., Ren, F., Xu, X., Ren, Y., Li, H., Wang, Y., Zhai, Y., and Chang, Z. (2009). ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Mol. Cell. Biol. 29, 3633-3643.   DOI
13 Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.   DOI
14 Rhee, J.W., Arata, A., Selleri, L., Jacobs, Y., Arata, S., Onimaru, H., and Cleary, M.L. (2004). Pbx3 deficiency results in central hypoventilation. Am. J. Pathol. 165, 1343-1350.   DOI
15 Ross, S.E., Greenberg, M.E., and Stiles, C.D. (2003). Basic helix-loop-helix factors in cortical development. Neuron 39, 13-25.   DOI
16 Cimadamore, F., Fishwick, K., Giusto, E., Gnedeva, K., Cattarossi, G., Miller, A., Pluchino, S., Brill, L.M., Bronner-Fraser, M., and Terskikh, A.V. (2011). Human ESC-derived neural crest model reveals a key role for SOX2 in sensory neurogenesis. Cell Stem Cell 8, 538-551.   DOI
17 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.   DOI
18 Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy, J., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785-798.   DOI
19 Krumlauf, R. (1994). Hox genes in vertebrate development. Cell 78, 191-201.   DOI
20 Chen, Y.M., Chen, L.H., Li, M.P., Li, H.F., Higuchi, A., Kumar, S.S., Ling, Q.D., Alarfaj, A.A., Munusamy, M.A., Chang, Y., et al. (2017). Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci. Rep. 7, 45146.   DOI
21 Cotovio, J.P. and Fernandes, T.G. (2020). Production of human pluripotent stem cell-derived hepatic cell lineages and liver organoids: current status and potential applications. Bioengineering (Basel) 7, 36.   DOI
22 Dixon, J.R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J.E., Lee, A.Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., et al. (2015). Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331-336.   DOI
23 Dubreuil, W., Hirsch, M.R., Jouve, C., Brunet, J.F., and Goridis, C. (2002). The role of Phox2b in synchronizing pan-neuronal and type-specific aspects of neurogenesis. Development 129, 5241-5253.   DOI
24 Episkopou, V. (2005). SOX2 functions in adult neural stem cells. Trends Neurosci. 28, 219-221.   DOI
25 Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari, G., et al. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662.   DOI
26 Lupien, M., Eeckhoute, J., Meyer, C.A., Wang, Q., Zhang, Y., Li, W., Carroll, J.S., Liu, X.S., and Brown, M. (2008). FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958-970.   DOI
27 Klemm, S.L., Shipony, Z., and Greenleaf, W.J. (2019). Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207-220.   DOI
28 Lamar, E., Kintner, C., and Goulding, M. (2001). Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. Development 128, 1335-1346.   DOI
29 Li, D., Liu, J., Yang, X., Zhou, C., Guo, J., Wu, C., Qin, Y., Guo, L., He, J., Yu, S., et al. (2017). Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 21, 819-833.e6.   DOI
30 Matsuda, T., Irie, T., Katsurabayashi, S., Hayashi, Y., Nagai, T., Hamazaki, N., Adefuin, A.M.D., Miura, F., Ito, T., Kimura, H., et al. (2019). Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 101, 472-485.e7.   DOI
31 McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501.   DOI
32 Mitchell, R.R., Szabo, E., Benoit, Y.D., Case, D.T., Mechael, R., Alamilla, J., Lee, J.H., Fiebig-Comyn, A., Gillespie, D.C., and Bhatia, M. (2014). Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem Cells Dev. 23, 1937-1946.   DOI
33 Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1-21.29.9.
34 Akiyama, K., Ishikawa, M., and Saito, A. (2008). mRNA expression of activity-regulated cytoskeleton-associated protein (arc) in the amygdala-kindled rats. Brain Res. 1189, 236-246.   DOI
35 Baker, N.E. and Brown, N.L. (2018). All in the family: proneural bHLH genes and neuronal diversity. Development 145, dev159426.   DOI
36 Bel-Vialar, S., Medevielle, F., and Pituello, F. (2007). The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev. Biol. 305, 659-673.   DOI
37 Bertrand, N., Castro, D.S., and Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517-530.   DOI
38 Brunet, J.F. and Pattyn, A. (2002). Phox2 genes - from patterning to connectivity. Curr. Opin. Genet. Dev. 12, 435-440.   DOI
39 Cedar, H. and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295-304.   DOI
40 Chang, C.Y., Ting, H.C., Liu, C.A., Su, H.L., Chiou, T.W., Lin, S.Z., Harn, H.J., and Ho, T.J. (2020). Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25, 2000.   DOI
41 Shimizu, T., Nakazawa, M., Kani, S., Bae, Y.K., Shimizu, T., Kageyama, R., and Hibi, M. (2010). Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 137, 1875-1885.   DOI
42 Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature 476, 220-223.   DOI
43 Rowe, R.G. and Daley, G.Q. (2019). Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 20, 377-388.   DOI
44 Rue, P. and Martinez Arias, A. (2015). Cell dynamics and gene expression control in tissue homeostasis and development. Mol. Syst. Biol. 11, 792.   DOI
45 Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., et al. (2016). A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042-2059.   DOI
46 Schwartzentruber, J., Foskolou, S., Kilpinen, H., Rodrigues, J., Alasoo, K., Knights, A.J., Patel, M., Goncalves, A., Ferreira, R., Benn, C.L., et al. (2018). Molecular and functional variation in iPSC-derived sensory neurons. Nat. Genet. 50, 54-61.   DOI
47 Scott-Browne, J.P., Lopez-Moyado, I.F., Trifari, S., Wong, V., Chavez, L., Rao, A., and Pereira, R.M. (2016). Dynamic changes in chromatin accessibility occur in CD8(+) T cells responding to viral infection. Immunity 45, 1327-1340.   DOI
48 Seo, H.I., Cho, A.N., Jang, J., Kim, D.W., Cho, S.W., and Chung, B.G. (2015). Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomedicine 11, 1861-1869.   DOI
49 Shum, C., Macedo, S.C., Warre-Cornish, K., Cocks, G., Price, J., and Srivastava, D.P. (2015). Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm. Behav. 74, 228-242.   DOI
50 Shin, J., Choi, E.J., Cho, J.H., Cho, A.N., Jin, Y., Yang, K., Song, C., and Cho, S.W. (2017). Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules 18, 3060-3072.   DOI
51 Schaffner, W. (2015). Enhancers, enhancers - from their discovery to today's universe of transcription enhancers. Biol. Chem. 396, 311-327.   DOI
52 Wapinski, O.L., Vierbuchen, T., Qu, K., Lee, Q.Y., Chanda, S., Fuentes, D.R., Giresi, P.G., Ng, Y.H., Marro, S., Neff, N.F., et al. (2013). Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621-635.   DOI
53 Soufi, A., Donahue, G., and Zaret, K.S. (2012). Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994-1004.   DOI
54 Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.   DOI
55 Terzic, J. and Saraga-Babic, M. (1999). Expression pattern of PAX3 and PAX6 genes during human embryogenesis. Int. J. Dev. Biol. 43, 501-508.
56 Yu, G., Wang, L.G., and He, Q.Y. (2015). ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382-2383.   DOI
57 Wu, F., Sapkota, D., Li, R., and Mu, X. (2012). Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J. Comp. Neurol. 520, 952-969.   DOI
58 Wu, Y.Y., Chiu, F.L., Yeh, C.S., and Kuo, H.C. (2019). Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol. 9, 180177.   DOI
59 Yang, D., Jang, I., Choi, J., Kim, M.S., Lee, A.J., Kim, H., Eom, J., Kim, D., Jung, I., and Lee, B. (2018). 3DIV: a 3D-genome Interaction Viewer and database. Nucleic Acids Res. 46, D52-D57.   DOI
60 Zhang, S.W., Zhang, H.W., Zhou, Y.F., Qiao, M., Zhao, S.M., Kozlova, A., Shi, J.X., Sanders, A.R., Wang, G., Luo, K.X., et al. (2020). Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science 369, 561-565.   DOI