Emphasizing the importance of R&D as a source of open innovation, Korean government is developing various programs focused on technology commercialization and is expanding investment on it. In spite of those efforts, technology commercialization is not vitalized yet due to the lack of demand for technology transfer, R&D planning scheme without considering market, immaturity of technology market, and so on. This study aims to suggest the business ecosystem model so that technology commercialization could be facilitated based on business ecosystem perspective. We set the framework for modeling a business ecosystem through reviewing the previous works, and draw several problems to be solved regarding public R&D commercialization in Korea from the perspective of ecosystem. Considering those, this research proposes the business ecosystem model for public R&D commercialization as a reference model for describing, discussing, and developing the technology commercialization strategy. The proposed model consists of 4 domains as follows: R&D, technology market, information distribution channels, and customers. The business ecosystem model shows that technology commercialization could be facilitated to create the market value through close relationship and organic cooperation among its members that form the ecosystem. Public research institutes as a keystone player could control the fate of the ecosystem. In this regard, this paper suggests roles of public research institutes for evolving the business ecosystem.
This study established a 3D ecosystem model composed of stratification considering the topographic heat accumulation effect and river outflow, and then applied this model to Jinhae, Masan Bay. Specifically, it reenacted the formation and developmental process of ODW according to the stratification by calculating the kinematic eddy viscosity and eddy diffusion coefficient of the stratification model. The results were used as input data for the ecosystem model and compared with DO, COD, I-N, and I-P, which is the standard index of ocean water quality. As a result, it was determined that COD and T-N are third grade and T-P is second grade standards for a natural environment.
Institution-based Technology Business Incubators are on the rise in India, as a means of promoting innovation-based tech start-up ecosystems, due to increased policy initiatives. Against this background, we have traced the origin and process of building a start-up ecosystem in IIT Madras, Chennai of India, based on semistructured interviews held with the stakeholders of the ecosystem. Subsequently, we have ascertained the key components of IIT Madras start-up ecosystem, and the process of incubation comprising pre-incubation, incubation and post-incubation phases. Finally, we have derived the key lessons from the ecosystem development experience and incubation process which enable generation of start-ups from both students and faculty, apart from alumni and ex-industry executives. Though this ecosystem model has emerged over a period of time through learning and experience, the ecosystem is able to generate more than 100 start-ups, majority of them being from students and faculty. Thus, the evolved start-up ecosystem of IIT Madras is able to generate faculty-supported and student-led entrepreneurship successfully.
Kim, Jiyeon;Seo, Changwan;Kwon, Hyuksoo;Ryu, Jieun;Kim, Myungjin
Journal of Environmental Impact Assessment
/
v.21
no.4
/
pp.593-607
/
2012
The Ministry of Environment have started the 'National Ecosystem Survey' since 1986. It has been carried out nationwide every ten years as the largest survey project in Korea. The second one and the third one produced the GIS-based inventory of species. Three survey methods were different from each other. There were few studies for species distribution using national survey data in Korea. The purposes of this study are to test species distribution models for finding the most suitable modeling methods for the National Ecosystem Survey data and to investigate the modeling results according to survey methods and taxonominal group. Occurrence data of nine species were extracted from the National Ecosystem Survey by taxonomical group (plant, mammal, and bird). Plants are Korean winter hazel (Corylopsis coreana), Iris odaesanensis (Iris odaesanensis), and Berchemia (Berchemia berchemiaefolia). Mammals are Korean Goral (Nemorhaedus goral), Marten (Martes flavigula koreana), and Leopard cat (Felis bengalensis). Birds are Black Woodpecker (Dryocopus martius), Eagle Owl (Bubo Bubo), and Common Buzzard (Buteo buteo). Environmental variables consisted of climate, topography, soil and vegetation structure. Two modeling methods (GAM, Maxent) were tested across nine species, and predictive species maps of target species were produced. The results of this study were as follows. Firstly, Maxent showed similar 5 cross-validated AUC with GAM. Maxent is more useful model to develop than GAM because National Ecosystem Survey data has presence-only data. Therefore, Maxent is more useful species distribution model for National Ecosystem Survey data. Secondly, the modeling results between the second and third survey methods showed sometimes different because of each different surveying methods. Therefore, we need to combine two data for producing a reasonable result. Lastly, modeling result showed different predicted distribution pattern by taxonominal group. These results should be considered if we want to develop a species distribution model using the National Ecosystem Survey and apply it to a nationwide biodiversity research.
Multipurpose development of the coast and ocean can be considered as multifunction construction combining the functions of coastal protection, waterfront amenity and creation or rehabilitation of habitats. Multfunction development of coastal and ocean spaces can be accomplished by applying the ecosystem control structure of artificial habitats which will cultivate fishing ground with ecological harmony to the coastal protection system. To evaluate the applicability of ecosystem control structures as as fundamental coastal protection structure, wave control function of the structure is studied by numerical and physical analyses. Dimensional analysis and hydraulic experiment point out the importance of width and crest depth of ecosystem control structure, construction water depth and wave steepness. Wave control efficiency is estimated by the attenuation coefficient $(K_H)$ according to wave steepness $(H_0/L_0)$, relative constructed water depth $(h_i/H_0)$, relative berm width $(B/L_0)$ and relative crest depth $(h_B/H_0)$ of eosystem control structure. Empirical fomulas are suggested based on the results of model test by applying the multiple model based on this experimental results and numerical wave shoaling-dissipation-breaking model appears to be valid for the analysis of wave transformation around ecosystem control structure in the coastal waters.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.2
/
pp.195-200
/
2004
Computer games use an intelligent method called flocking for boids' group behavioral modeling. Flocking can naturally model group behavioral patterns of unpredictable forms such as birds and fishes using some computer resource. In this paper, we implemented an ecosystem which is composed of predator and prey for group behavioral modeling of real underwater ecosystem. Also fuzzy logic is applied to implement instinct desire of ecosystem elements. As the result, we confirmed that the model can overcome breakdown of ecosystem and model naturally ecosystem behavior.
Journal of Fisheries and Marine Sciences Education
/
v.26
no.6
/
pp.1185-1192
/
2014
Health assessment of aquatic ecosystem was investigated by using LEHA (Lentic Ecosystem Health Assessment) model method with habitat fish population structure analysis in this study. The investigation was two comparison spots (St 1; floating island, St 2; 500 m away site from st 1) in the Habcheon lake of Korea. As results, health evaluation of Habcheon lake ecosystem was fair grade of LEHA scores base on metric values in both place (30 score in st. 1 and 32 score in st. 2).
Kim, Dong-Woo;Lee, Sang-Hyuk;Yu, Jae-Jin;Son, Seung-Woo
Journal of the Korean Society of Environmental Restoration Technology
/
v.24
no.6
/
pp.89-96
/
2021
In this study, a deep-learning image analysis model was established and validated for AI-based monitoring of the tidal flat ecosystem for marine protected creatures Ocypode stimpsoni and their habitat. The data in the study was constructed using an unmanned aerial vehicle, and the U-net model was applied for the deep learning model. The accuracy of deep learning model learning results was about 0.76 and about 0.8 each for the Ocypode stimpsoni and their burrow whose accuracy was higher. Analyzing the distribution of crabs and burrows by putting orthomosaic images of the entire study area to the learned deep learning model, it was confirmed that 1,943 Ocypode stimpsoni and 2,807 burrow were distributed in the study area. Through this study, the possibility of using the deep learning image analysis technology for monitoring the tidal ecosystem was confirmed. And it is expected that it can be used in the tidal ecosystem monitoring field by expanding the monitoring sites and target species in the future.
International Journal of Advanced Culture Technology
/
v.8
no.1
/
pp.157-164
/
2020
The reinforcement of the token, which is based on the token economy currently applied in blockchain-based cryptography, plays a critical role in forming the cryptographic-related ecosystem. Therefore, in this paper, it was investigated the reinforcement principle of token supporting the Token economy for blockchain model. In order to create a healthy ecosystem based on the reinforcement system principle, it is necessary to find ways to secure scalability by seeking consensus between the participants and the market economy structure so that it can generate an influx of more participants than seeking to maximize profits of certain people. Desirable behavior is defined as an action required by ecosystem participants that have the property of making the token ecosystem sustainable, and to do so, each individual receives appropriate incentives (rewards) when taking this action, ultimately encouraging voluntary participation and action by all participants in the ecosystem to optimize the interests of both individuals and participants. The expected benefit of this study may contribute to the establishment of various business models based on the principle of the reinforcement system.
Korean Journal of Agricultural and Forest Meteorology
/
v.12
no.2
/
pp.122-131
/
2010
This paper introduces the concept of a virtual ecosystem and reports the following three mathematical approaches that could be widely used to construct such an ecosystem, along with examples: (1) a molecular dynamics simulation approach for animal flocking behavior, (2) a stochastic lattice model approach for termite colony behavior, and (3) a rule-based cellular automata approach for biofilm growth. The ecosystem considered in this study consists of artificial organisms and their environment. Each organism in the ecosystem is an agent that interacts autonomously with the dynamic environment, including the other organisms within it. The three types of model were successful to account for each corresponding ecosystem. In order to accurately mimic a natural ecosystem, a virtual ecosystem needs to take many ecological variables into account. However, doing so is likely to introduce excess complexity and nonlinearity in the analysis of the virtual ecosystem's dynamics. Nonetheless, the development of a virtual ecosystem is important, because it can provide possible explanations for various phenomena such as environmental disturbances and disasters, and can also give insights into ecological functions from an individual to a community level from a synthetic viewpoint. As an example of how lower and higher levels in an ecosystem can be connected, this paper also briefly discusses the application of the second model to the simulation of a termite ecosystem and the influence of climate change on the termite ecosystem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.