Browse > Article
http://dx.doi.org/10.14249/eia.2012.21.4.593

A Study on the Species Distribution Modeling using National Ecosystem Survey Data  

Kim, Jiyeon (National Institute of Environmental Research)
Seo, Changwan (Environmental Planning Institute, Seoul National University)
Kwon, Hyuksoo (National Institute of Environmental Research)
Ryu, Jieun (Graduate School, Seoul National University)
Kim, Myungjin (National Institute of Environmental Research)
Publication Information
Journal of Environmental Impact Assessment / v.21, no.4, 2012 , pp. 593-607 More about this Journal
Abstract
The Ministry of Environment have started the 'National Ecosystem Survey' since 1986. It has been carried out nationwide every ten years as the largest survey project in Korea. The second one and the third one produced the GIS-based inventory of species. Three survey methods were different from each other. There were few studies for species distribution using national survey data in Korea. The purposes of this study are to test species distribution models for finding the most suitable modeling methods for the National Ecosystem Survey data and to investigate the modeling results according to survey methods and taxonominal group. Occurrence data of nine species were extracted from the National Ecosystem Survey by taxonomical group (plant, mammal, and bird). Plants are Korean winter hazel (Corylopsis coreana), Iris odaesanensis (Iris odaesanensis), and Berchemia (Berchemia berchemiaefolia). Mammals are Korean Goral (Nemorhaedus goral), Marten (Martes flavigula koreana), and Leopard cat (Felis bengalensis). Birds are Black Woodpecker (Dryocopus martius), Eagle Owl (Bubo Bubo), and Common Buzzard (Buteo buteo). Environmental variables consisted of climate, topography, soil and vegetation structure. Two modeling methods (GAM, Maxent) were tested across nine species, and predictive species maps of target species were produced. The results of this study were as follows. Firstly, Maxent showed similar 5 cross-validated AUC with GAM. Maxent is more useful model to develop than GAM because National Ecosystem Survey data has presence-only data. Therefore, Maxent is more useful species distribution model for National Ecosystem Survey data. Secondly, the modeling results between the second and third survey methods showed sometimes different because of each different surveying methods. Therefore, we need to combine two data for producing a reasonable result. Lastly, modeling result showed different predicted distribution pattern by taxonominal group. These results should be considered if we want to develop a species distribution model using the National Ecosystem Survey and apply it to a nationwide biodiversity research.
Keywords
National Ecosystem Survey; Species Distribution Model; Maximum Entropy Model; Biodiversity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 임동옥, 황인천, 정흥락, 2005, 보호종인 히어리의 자생지내외 보전과 지역사회 협력 모델 개발; 히어리 분포지 특성에 관한 연구, 한국환경생태학회지, 19(2), 162-176.
2 임동옥, 고갑천, 김철환, 이재석, 이현우, 장준명, 정흥락, 황인천, 2011, 히어리, 서울: 광일문화사.
3 장형태, 김남춘, 김무열, 권혜진, 송호경, 2008, 히어리 개체군의 식생과 토양특성, 한국환경생태학회지, 22(6), 609-615.
4 최창용, 남현영, 이우신, 2007, 서로 다른 환경에서 서식하는 수리부엉이(Bubo Bubo)의 먹이 이용, 한국환경생태학회지, 21(1), 30-37.
5 최태영, 박종화, 2004, 설악산국립공원내 산양(Nemorhaedus Caudatus Raddeanus)의 잠재 서식지 적합성 모형; 다기준평가기법(MCE)과 퍼지집합(Fuzzy Set)의 도입을 통하여, 한국복원학회지, 32(4), 28-38.
6 환경부, 1997, 제2차 전국자연환경조사 지침, 환경부.
7 환경부, 2005, 멸종위기야생동식물 보고서. 환경부.
8 환경부, 2006, 제3차 전국자연환경조사 지침, 환경부.
9 환경부, 2007, 보호종인 히어리의 자생지내외 보전과 지역사회 협력 모델 개발, 환경부.
10 Anon, 1999, S-plus 2000 Guide to Statistics, 1, MathSoft.
11 Baldwin, R. A., 2009, Use of Maximum Entropy Modeling in Wildlife Research, Entropy, 11, 854-866.   DOI
12 Beazley, K., Smandych, L., Snaith, T., MacKinnon, F., Austen-Smith, P., Duinker, P., 2005, Biodiversity considerations in conservation system planning: Map-based approach for Nova Scotia, Canada, Ecological Applications, 15, 2192-2208.   DOI   ScienceOn
13 Condit, R., Ashton, P., Balslev, H., Brokaw, N., Bunyavejchewin, S., Chuyong, G., Co, L., Dattaraja, H. S., Davies, S., Esufali, S., Ewango, C. E. N., Foster, R., Gunatilleke, N., Gunatilleke, S., Hernandez, C., Hubbell, S., John, R., Kenfack, D., Kiratiprayoon, S., Pamela, Hart, T., Itoh, A., LaFrankie, J. V., Liengola, I., Lagunzad, D., Lao, S., Losos, E., Magard, E., Makana, J., Manorkaran, N, Navarrete, H., Mohammednur, S., Okhubo, T., Perez, R., Samper, C., Hua Seng, L., Sukumar, R., Svenning, J .C., Tan, S., Thomas, D., Thompson, J., Vallejo, M., Villa Munoz, G., Valencia, R., Yamakura, T., Zimmerman, J., 2005, Tropical tree ${\alpha}$-diversity: Results from a worldwide network of large plots, Biologiske Skrifter, 55, 565-582.
14 del Barrio, G., Harrison, P. A., Berry, P. M., Butt, N., Sanjuan, M. E., Pearson, R. G., Dawson, T. P., 2006, Integrating multiple modelling approaches to predict the potential impacts of climate change on species' distributions in contrasting regions: comparison and implications for policy, Environmental Science and Policy, 9(2), 129-147.   DOI   ScienceOn
15 Elith, J., Catherine, Robert, Dudik, M., Ferrier, S., Guisan, A., Huettmann, F., John, Lehmann, A., Li, J., Lucia, Bette, Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Jacob, A., Steven, Richardson, K., Scachetti-Pereira, R., Soberon, J., Williams, S., Mary, Niklaus, 2006, Novel methods improve prediction of species' distributions from occurrence data, Ecography, 29(2), 129-151.   DOI   ScienceOn
16 Ferrier, S., 2002, Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology, 51(2), 331-363.   DOI   ScienceOn
17 Franklin, J., 2009, Mapping species distributions spatial inference and prediction, Cambridge: Cambridge University Press.
18 Gramendia, A., Carcamo, S., Schwendtner, O., 2006, Forest management considerations for conservation of Black Woodpecker Dryocopus martius and White-backed Woodpecker Dendrocopos leucotos populations in Quinto Real (Spanish Western Pyrenees), Biodiversity and Conservation, 15, 1399-1415.   DOI   ScienceOn
19 Huntley, B., Green, R. E., Collingham, Y. C., 2004, The performance of models relating species geographical distributions to climate is independent of trophic level, Ecology letters, 7, 417-426.   DOI   ScienceOn
20 Kremen, C., Cameron, A., Moilanen, A., Phillips, S. J., Thomas, C. D., Beentje, H., Dransfield, J., Fisher, B. L., Glaw, F, Good, T. C., Harper, G. J., Hijmans, R. j., Lees, D. C., Louis, E., Nussbaum, R. A., Raxworthy, C. J., Razafimpahanana, A., Schatz, G. E., Vences, M., Vieites, D. R., Wright, P. C., and Zjhra M. L., 2008, Aligning conservation priorities across taxa in Madagascar with high-resoultion planning tools. Science, 320(5873), 222- 226.   DOI   ScienceOn
21 Li W., 1999, Designing the core zone in a biosphere reserve based on suitable habitats: Yancheng Biosphere Reserve and the red crowned crane (Grus japonensis), Biological Conservation, 90(3), 167-173.   DOI   ScienceOn
22 Margules, C. R., Pressy R. L., 2000, Systematic conservation planning, Nature, 405 (6783), 243-253.   DOI   ScienceOn
23 Myers, N., Mittermeier, R. A., Mittermeier, C., G., Fonseca, G., Kent, G., 2000, Biodiversity hotspots for conservation priorities, Nature, 853-858.   DOI   ScienceOn
24 Seo, C., Thorne, J. H., Hannah, L., Thuiller, W., 2009, Scale effects in species distribution models: implications for conservation planning under climate change, Biology Letters, 5(1), 39-43.   DOI   ScienceOn
25 Manel, S., Williams, H.C., Ormerod, S. J., 2001, Evaulating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921-931.
26 Mike, A., 2007, Species distribution models and ecological theory: A critical assessment and some possible new approaches, Ecological modeling, 200(1), 1-19.   DOI
27 Swets, J. A., 1998, Measures of the accuracy of diagnostic systems, Science, 240, 1285- 1293.
28 Pearson, R. G., Dawson, T. P., Berry, P. M., Harrison, P. A., 2002, SPECIES: A spatial evaluation of climate impact on the envelope of species, Ecological modeling, 154(3), 289-300.   DOI   ScienceOn
29 Pearson, R. G., Raxworthy, C. J., Nakamura M., 2007, Predicting species distribution from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, Journal of Biogeography, 34(1), 102-117.
30 Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006, Maximum entropy modeling of species geographic distributions, Ecological Modelling, 190, 231-259.   DOI   ScienceOn
31 Primack, R., B., 2004, A primer of conservation biology, Sinauer.
32 Regan, H. M., Davis, F., W., Andelman, S. J., Widyanata, A., Freese, M., 2007, Comprehensive criteria for biodiversity evaluation in conservation planning, Biodiversity Conservation, 16, 2715-2728.   DOI   ScienceOn
33 Rodrigues, A. S. L., Andelman, S. J., Andelman, S. J., Bakarr, M. I., Boitani, L., Brooks, T. M., Cowling, R. M., Fishpool, L. D. C., Gaston, K. J., Hoffman, M., Long, J. S., Marquet, P. A., Pilgrim, J. D., Pressy, R. L., Schipper, J., Sechrest, W., Stuart, S. N., Underhill, L. G., Waller, R. W., Watts, M. E. J., Yan, X., 2004, Effectiveness of the global protected area network in representing species diversity, Nature 428(6983), 640-643.   DOI   ScienceOn
34 Woodward, F. I., Williams, B. G., 1987, Climate and plant distribution at global and local scale, Vegetatio, 69(3), 189-197.   DOI
35 Scott, J. M., Davis, F., Csuti, B., Noss, R., Butterfield, B., Anderson, H., Caicco, S., Erchia, F. D., Edwards, T. C., Ulliman J., 1993, Gap analysis: A geographic approach to protection of biological diversity, Wildlife Monographs, 123, 3-41.
36 Thorn, J. S. V., Nijman, D., Smith, Nekaris K. A. I., 2009, Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates:Nycticebus), Diversity and Distributions, 15(2), 289- 298.   DOI   ScienceOn
37 Thuiller, W., 2003, BIOMOD: optimising predictions of species distributions and projecting potential future shifts under global change, Global Change Biology, 9(10), 1353-1362.   DOI   ScienceOn
38 World Resources Institute, 1994, World Resources 1994-1995: A Guide to the Global Environment, Oxford University Press.
39 권혁수, 2011, 보호지역계획을 위한 생물다양성 통합평가모형; 지리산과 덕유산, 가야산 권역을 대상으로, 서울대학교 대학원 박사학위논문.
40 국립환경과학원, 2003, 자연환경조사는 왜 하는가, 국립환경과학원.
41 김지연, 류지은, 도재화, 이두범, 이윤경, 김동원, 서재화, 서민환, 서창완, 권혁수, 서진수, 박종화, Thorne, J. H., 2010, 전국자연환경조사 결과를 활용한 종분포모델링 연구(I), 국립환경과학원.
42 김휘, 강우창, 이길훈, 최윤자, 장진성, 1988, 희귀식물, 히어리 생태에 관한 연구, 서울대학교 수목원 연구보고, 18, 44-56.
43 노일, 문현식, 2004, 히어리 군락의 입지특성과 식생구조 분석, 농업생명과학연구, 38(2), 41-51.
44 문현식, 노일, 김종갑, 전남 곡성지역 히어리 군락의 입지환경 및 식생구조, 한국농림기상학회지, 6(3), 196-203.
45 서창완, 박유리, 최윤수, 2008, 위치자료의 종류에 따른 생물종 분포모형 비교 연구, 한국지리공간정보학회지, 16(4), 59-64.
46 원병오, 1981, 한국동식물도감, 문교부.
47 이동근, 송원경, 2008, 삵의 서식지 적합성 평가를 위한 분석단위 설정 및 보전지역 선정, 2008, 한국조경학회지, 36(5), 64-72
48 이우신, 박찬열, 임신재, 허위행, 정옥식, 최창용, 박용수, 이은재, 2010, 야생동물 생태 관리학, 라이프사이언스.
49 이장호, 2000, 까막딱다구리(Dryocopus martius)의 서식지 이용 특성에 관한 연구, 서울대학교 석사학위논문.
50 이정환, 강호철, 안현철, 조현서, 1999, 한국 특산 히어리 군락의 식생구조와 맹아지 동태, 한국환경생태학회지, 13(3), 280-287.