• Title/Summary/Keyword: Eco-ship

Search Result 117, Processing Time 0.025 seconds

Study on Operating Performance Estimation Process of Electric Propulsion Systems for 2.5 Displacement Ton Class Catamaran Fishing Boat (쌍동형 배수량 2.5톤 급 어선의 전기 추진 시스템 운항성능 추정 프로세스 연구)

  • Jeong, Yong-Kuk;Lee, Dong-Kun;Jeong, Uh-Cheul;Ryu, Cheol-Ho;Oh, Dae-Kyun;Shin, Jong-Gye
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2013
  • Because the environmental regulations for ships are getting tighter, green ships employing eco-friendly technology have recently received a large amount of attention. Among them, various studies for electric propulsion ships have been carried out, particularly in the United States, European Union, and Japan. On the other hand, research related to electric propulsion ships in Korea is in a very nascent stage. In this paper, an estimation process based on the rough requirements of ship-owners for the operating performance of electric propulsion ships is proposed. In addition, the estimation process is applied to a small fishing boat for verification of the process. These results are expected to be used as design guidelines in the early stage of the design process for electric propulsion ships.

On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR (구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Bae, Sang-Don
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.

A Study on Determining Economical Speed of Diesel Freight Locomotive (화물열차의 경제속도 결정에 관한 연구)

  • Kim, Kwang-Tae;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.294-299
    • /
    • 2012
  • Rail transport has been considered an environmental-friendly transport mode compared with other transport modes such as ship, truck, and aircraft. However, air pollutions emitted by diesel locomotives have emerged as social issues. In addition, the railway industry may not be able to avoid a duty of alleviating greenhouse gases emission owing to the Korean government policies for green growth which is an economic paradigm that simultaneously pursues growth and environmental improvement. Moreover, rising oil prices has burdened a train operating company. The purpose of this paper is to develop a methodology of determining an economical speed of diesel freight locomotive from the viewpoint of the train operating company. In the methodology, we first define an operational cost function based on various cost factors and then suggest formula to calculate an economical speed of diesel freight locomotive. To estimate the influence of cost factors such as diesel price, carbon taxes, and time costs on the speed of diesel freight locomotive, sensitivity analysis was conducted.

Suggestions for Improvement of Port Charge Discount Policies - focused on Ulsan Port

  • Sangseop Lim;Sang-Mi Im;Seok-Hun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.191-198
    • /
    • 2024
  • Korea is an import and export-oriented economy that relies on shipping transportation, and sea ports play an important role in national economic growth. To secure and maintain the competitiveness of these ports, hardware and software investments are required, but policy support can also be expected to have an effect. This study identified the irrationality of the system by exploratory analysis of the port facility fee discount system for Ulsan Port, an energy hub port, and suggested improvement measures to resolve it.This study analyzed the volume of Ulsan Port and the reduction of port facility usage fees for about 10 years and identified irrational factors that despite a special port for liquid cargo, a considerable reduction for container cargo is concentrated, and even because it was a passing ship, 100% reduction for entrance and clearance fees were provided to them, which could cause serious moral hazard.. As a way to improve the port facility charge discount system at Ulsan Port, this study proposed strengthening support for eco-friendly activities to support containers, adjusting the reduction rate for passing ships, or improving the reduction and exemption application process.

A Study on Marine Ecological Risk Assessment of Ballast Water Management Technology Using the Sodium Dichloroisocyanurate (NaDCC) Injection Method (이염화이소시아뉼산나트륨(NaDCC) 주입 선박평형수 처리기술의 해양생태위해성평가에 대한 연구)

  • Kim, Tae Won;Moon, Chang Ho;Park, MiOk;Jeon, MiHae;Son, Min Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Ballast water treated by sodium dichloroisocyanurate (NaDCC) injection method in ballast water management system (BWMS) contains reactive bromine, chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on the marine environment. WET testing was carried out for eight marine and fresh water organisms, i.e. diatom, Skeletonema costatum, Navicula pelliculosa, green algae, Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer, Brachionus plicatilis, Brachionus calyciflorus and fish, Cyprinodon variegatus, Pimephales promelas. The WET test revealed that diatom and green algae were the only organisms that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50 % (EC50) values of 25.0 %, 50.0 % and over 100.0 %, respectively, in seawater conditions. In contrast, rotifer and fish showed no toxicities to the effluent in the all salinity conditions. Meanwhile, chemical analysis revealed that the BWMS effluent contained total of 25 DBPs such as bromate, isocyanuric acid, formaldehyde, chloropicrin, trihalomethanes (THMs), halogenated acetonitriles (HANs) and halogenated acetic acids (HAAs). Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the all DBPs did not exceed 1.0 for general harbour environments, but isocyanuric acid, tribromomethane, chloropicrin and monochloroacetic acid exceed 1.0 for near ship environments. However, when NOEC (25.0%) of the WET test results where actual effluent was applied, it was concluded that the NaDCC injection method did not have unacceptable ecological risks to the general harbor including near ship environments.

Analysis of Ventilation Characteristics in Ship Fuel-Preparation Rooms During Ammonia Leakage (암모니아 누출 시 선박 연료 준비실의 환기 특성 분석)

  • Jin-Woo Bae;Bo Rim Ryu;Kweon-Ha Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.5
    • /
    • pp.490-498
    • /
    • 2024
  • Ammonia is an eco-friendly marine fuel that does not emit carbon dioxide and is a primary contributor to global warming. Despite its benefits, ammonia poses significant risks owing to its toxicity, explosiveness, and corrosiveness, thus necessitating robust safety measures to manage its potential leaks on ships. This study investigates the characteristics of ammonia leaks and ventilation dynamics in a ship fuel-preparation room, with emphasis on the ef ect of varying the positions of air supply and exhaust outlets. The leakage rate is set at 0.1 kg/s, with a ventilation rate of 30 ACH (air changes per hour). The scenario with air supply at Aft - Top - Stbd and exhaust at Fwd - Top - Stbd (Case 1) results in the highest average ammonia concentration after 100 s. Conversely, the scenario with air supply at Aft - Bottom - Stbd and exhaust at Fwd - Bottom - Port (Case 14) results in the lowest concentration. After 50 s, Case 1 indicate ammonia concentrations exceeding 1500 ppm toward Aft, whereas Case 14 indicate a consistent stagnation zone along the Fwd wall. The distribution of ammonia concentration and velocity varies by height owing to the positioning of the air supply and exhaust outlets as well as the equipment configuration, thus resulting in higher concentrations in areas with slower airflow. When a small amount of ammonia leaked at 0.1 kg/s for 10 s, explosive gas formed near the leak point at a height of approximately 1 m, thus indicating an extremely low risk of explosion from slight ammonia leaks. This study confirms that the optimal combination of air supply and exhaust-duct positions can effectively control ammonia concentration. This finding is expected to contribute to the establishment of design standards and ensure safety when using ammonia as marine fuel.

Investigation and Evaluation of Algae Removal Technologies Applied in Domestic Rivers and Lakes (국내 하천/호수에 적용된 조류저감기술의 조사 및 평가)

  • Byeon, Kyu Deok;Kim, Ga Young;Lee, Inju;Lee, Saeromi;Park, Jaeroh;Hwang, Taemun;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.387-394
    • /
    • 2016
  • Commercial 28 algae removal technologies that have been applied in domestic rivers and lakes with green tide were investigated, analyzed and classified. The classification of algae removal technologies was based on the three criteria (i.e., principle, flow rate of water body, and application period). Also, algae removal technologies were evaluated in terms of cost effectiveness, field applicability, effect durability, and eco friendliness. From the analysis results, technologies using physical, chemical, biological, and convergent controls were 32.2%, 25%, 21.4%, and 21.4%, respectively. The 75% of technologies have been applied to stagnant water body (${\leq}0.2m/s$). Also, algae harvesting ship with dissolved air flotation, conveyor belt and filtration processes and natural floating coagulant were found to have better field applicability, compared to other technologies. However, proper algae removal technology in specific rivers and lakes should be chosen after the evaluation of long-term pilot scale field test. Also, development of energy and resource recovery technologies from algae biomass is warranted.

Alternatives for Establishing Green Logistics System in Ulsan Port (울산항의 녹색물류체계 구축 방안)

  • Jo, Jin-Haeng
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.4
    • /
    • pp.187-206
    • /
    • 2019
  • After reviewing the concept and previous studies related to green ports, this study analyzes the implications of green port policy of advanced ports in foreign countries and analyzes problems in terms of environmentally-friendly green port policy for Ulsan port, and to present sustainable green logistics establishment measures. The literature survey and Benchmarking methods are adopted as research methodology and the results are as follows. First, the pan-government climate change response management system, legislation of relevant laws, implementation of fiscal support policies, and roadmaps should be established. Second, the foundation for eco-friendly green growth should be established through the discovery of business models in conjunction with leading industries in the Southeastern Metropolitan Economic Area. Third, the Ulsan Port Greenport, such as AMP, in-port LNG propulsion ship, and ESI vessel incentive, should be built. Fourth, a low-carbon, high-efficiency sea-shuttle service shall be established through the introduction of the sea-shuttle service along the sea route. Fifth, energy self-reliant ports, including all institutions in the metropolitan Ulsan port area that have exceeded the level of Ulsan port Authority, should be built. Finally, water-type ports need to be built through the creation of coastal forests, the purification of marine water quality, and the introduction of colors to port.

Study on the Calculation of Towing Force for LNG Bunkering Barge (LNG 벙커링 바지의 예인력 계산에 관한 연구)

  • Oh, Seung-Hoon;Jung, Jae-Hwan;Hwang, Sung-Chul;Jung, Hyun-Woo;Cho, Seok-Kyu;Jung, Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.158-161
    • /
    • 2018
  • In this paper, the towing force is calculated for the LNG bunker barge. LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG(Liquefied Natural Gas), an eco-friendly energy source. In the case of the LNG bunker barge, a self-propulsion is considered through retrofit from an operating point. Therefore, the LNG bunker barge is similar to the shape of the ship as compared to a towed barge, so a rule of the towed barge overestimates the towing force. In order to improve accuracy, the calm water resistance is calculated according to the ITTC 1978 method considering the wave resistance by the Rankine source method. The added resistance in waves is calculated using the modified radiated energy method considering the shortwave correction method of NMRI. The performance of the towing resistances through the calm water resistance and the added resistance in waves was compared with rules of the towed barge.

  • PDF

Study on the Estimation of Towing Force for LNG Bunkering Barge (LNG 벙커링 바지의 예인력 산정에 관한 연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.378-387
    • /
    • 2018
  • In this paper, the towing force for the LNG bunkering barge was investigated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. In the case of the LNG bunkering barge, self-propulsion is considered through retrofit from an operating point. Therefore, the LNG bunkering barge's shape is similar to that of the ship as compared to a towed barge, so a rule of the towed barge overestimates the towing force. In order to improve accuracy, the calm water resistance was calculated using ITTC 1978 method which considers wave resistance by the Rankine source method. The added resistance in waves was calculated using the modified radiated energy method which considers the shortwave correction method of NMRI. The performance of the towing resistances through the calm water resistance and the added resistance in waves was compared to rules associated with towed barges.