• Title/Summary/Keyword: Eco-friendly material

Search Result 558, Processing Time 0.029 seconds

Strength Performance Evaluation of Deck Using Reinforced Plastic Connector (강화플라스틱 연결구를 이용한 데크의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Dong-Heub;Kim, Kyung-Dae;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.12-18
    • /
    • 2013
  • Existing wood decks brings out negligent accident because fastener can be pulled-out by cyclic load of pedestrians. When deck and joist are connected, it also causes the problems, which are cracking of wood decks and rapid decay by material of fastener. In this study, strength property of deck unit using reinforced plastic connector made by domestic A company was evaluated. Southern yellow pine (Pinus palustris Miller) were used for deck material. Bending strength of deck units were implemented for fastener type and joist spacing (400, 600 mm). In the result, carbon steel screw into reinforced plastic connector was the best in average bending strength(Joist spacing : 400, 600 mm). In the result of bending strength for joist-width (40, 50, 70, 80 mm), the average maximum bending strength was measured when the joist spacing was 40 mm.

Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline (송배전관로 되메움재로 활용하기 위한 국내 순환골재의 다짐 및 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Park, Sang-Woo;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.17-33
    • /
    • 2011
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been considered due to the issues of eco-friendly construction and a lack of natural aggregate resource. It is important to identify the physical and thermal properties of domestic recycled aggregates that can be used as a backfill material. This paper evaluated thermal properties of concrete-based recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregates and river sand provided by local vendors were measured using the transient hot wire method and the transient needle probe method after performing the standard compaction test. The needle probe method considerably overestimated the thermal resistivity of recycled aggregates especially at the dry of optimum water content because of experiencing disturbance while the needle probe is being inserted into the specimen. Similar to silica sand, the thermal resistivity of recycled aggregates decreased when the water content increased at a given dry density. Also, this paper evaluated some of the existing prediction models for the thermal resistivity of recycled aggregates with the experimental data, and developed a new prediction model for recycled aggregates. This study shows that recycled aggregates can be a promising backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

Performance Evaluation of Fiber-Reinforced Concrete Compression Members Transversely Constrained by BFRP (BFRP로 횡구속된 섬유 보강 콘크리트 압축부재의 성능평가)

  • Lee, Gyeong-Bok;Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • Corrosion and degradation of reinforced structures due to abnormal climates and natural disasters further accelerate the aging of structures. Coping with the decrease in structure performance, many old structures are being repaired and reinforced with low-weight and high-strength materials such as glass fiber composite material (GFRP). To further contribute, this paper focus on a more economical and eco-friendly material, basalt fiber composite (BFRP), which provide a more effective lateral constraint effect for seismic reinforcement. The main variables considered in this study are the curing temperature during the manufacturing of BFRP and the material characteristics of the target concrete member. The lateral constraint reinforcement effect was investigated through the evaluation of the performance of normal concrete and those with improved durability through fiber reinforcement. The reinforcement effect was 3.15 times for normal concrete and 3.72 times for fiber reinforced concrete, and the difference in reinforcement effect due to the improvement of the durability characteristics of the compression member was not significant. Lastly, the performance of the BFRP was compared with the results of the GFRP reinforcement from the previous study. The effect of the BFRP reinforcement was 1.18 times better than that of the GFRP reinforcement.

Preparation of Natural Wall Paint by Using Sericite Clay (견운모를 이용한 벽마감용 천연페인트 제조)

  • Kim, Munui;Lalhmunsiama, Lalhmunsiama;Lee, Seung-Mok;Jin, Kang-Jung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.501-505
    • /
    • 2017
  • Due to the rapid urbanization and increased population, there is an increase in airtight nature of buildings which causes serious indoor air pollution. Among several indoor air pollutants, volatile organic compounds (VOCs) emitted from paint are of major concern. Therefore, there is an urge for the development of environmental friendly paint products. In this wok, a natural wall paint (NWP) was prepared by utilizing a natural clay material "sericite" as a main component. A small chamber test was carried out to identify the toxic substances release from NWP and the results were compared with two eco-friendly commercial paints. The total VOCs were detected in trace level inside the test chamber and their concentrations were below the recommended indoor air quality standards. Toluene was not detected for NWP, whereas formaldehyde was observed in trace level. The toxicity index results were compared with two commercial paints and found that NWP exhibited less harmful gas emission. Based on certification rating of building materials, NWP can be classified as the first grade of building materials. Due to the above advantages, the use of sericite as a major component in NWP will be a useful technique to maintain the indoor air quality.

Study of Miscibility of Natural Silk by Molecular Dynamics Calculation of Solubility Parameter (용해도 파라미터의 분자동역학 계산을 통한 천연 실크 소재의 혼화성 연구)

  • Im, Keunan;Choi, Kang-min;Leem, Jung Woo;Kim, Young L.;Park, Chi Hoon;Jang, Hae Nam
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2021
  • In recent years, polymer membranes, which are actively used in various industrial fields, have the advantage of being able to impart unique properties through the control of chemical structures and physical properties in the film-fabrication process, as well as through fabricating blend membranes mixed with various materials. In this study, the solubility parameter, which can be used as an index of miscibility with other materials, was calculated using molecular dynamics using a silkworm (Bombyx mori) silk polymer which has a wide potential to be used as an eco-friendly natural material. When the solubility parameter of polyvinylalcohol (PVA), which is also environmentally friendly and biocompatible, was calculated by molecular dynamics and compared with each other, it was confirmed that the two polymer materials had similar solubility parameter values. In conclusion, it was theoretically proved that the two polymers could blend well with each other, which was confirmed through experiments.

A Heat Shock Simulation System for Testing Performance of EWP (EWP 성능 검사를 위한 열 충격 모사시스템)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.553-558
    • /
    • 2019
  • Global auto parts companies are making efforts to develop EWP(: Electric Water Pump) which is one of the core parts of environment friendly car. In eco-friendly automobiles, an independent cooling system is used rather than a cooling system that is linked to an internal combustion engine. Therefore, the research and development of the water pump operating separately from the engine and the related production system are being actively carried out. In order to overcome the shortcoming of EWP of PPS material suitable for injection system, G company which is a global parts company that researches and develops EWP around SUS and is in the process of developing robot-based production equipment for mass production. In this paper, a heat shock simulation system is designed and implemented that works with the robot-based production system to test the performance of the produced EWP. By using this system, it is possible to test the EWP in an virtual environment similar to the actual environment, thereby reducing the defect rate of the product. At the same time, all the data produced during the entire process for testing can be stored, which can be utilized in the future development of CPS(: Cyber Physical System) of EWP system based on big data.

Development of Self-Repairing Smart Concrete Using Micro-Biologically Induced Calcite Precipitation (미생물의 방해석 석출 작용을 이용한 자기보수 스마트 콘크리트 개발에 관한 연구)

  • Kim, Wha-Jung;Ghim, Sa-Youl;Park, Sung-Jin;Choi, Kil-Jun;Chun, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.547-557
    • /
    • 2010
  • This paper presents a study on the development of next generation smart concrete in an eco-friendly manner using micro-biologically induced calcite precipitation (MICP) via microbial biomineralization. It seems that currently, the reformation and functional improvement of concrete using MICP can be achieved using Sporosarcina pasteurii, which is a representative microorganism that produces calcite precipitation. Based on previous studies on MICP the biochemical tests and crystallinity evaluation of cement using sporoasrcina pasteurii and four additional micro-organisms from the concrete structures as identified by 16S rDNA sequence analysis were conducted. Also by applying the Sporosarcina pasteurii and separated four effective micro-organisms from the concrete structures to mortar, the compressive strength improvement by varying curing conditions, repair of crack were examined, and plans for future study were suggested. The effect of the application of effective micro-organisms can lead to the development of a new material that will contribute to resolution of environmental problems and facilitate repair work, and this can also serve as a new research theme in the future. In addition, the importance of this study is to use micro-organism, which is found common in concrete structures, this new microbial is not only environmentally safe but also persists in the natural environment for an extended period of time. Therefore, it seems to have a great potential to became a new environmentally low-burdened functional material.

A Study on the Performance Evaluation Method of Warm-mix Asphalt Mixture by the Analysis of Bonding Properties between Asphalt Binder and Aggregate (중온 아스팔트 혼합물의 성능 평가를 위한 아스팔트 바인더와 골재 사이의 접착물성분석 방법에 관한 연구)

  • Yoo, In Sang;Cho, Dong-Woo;Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.803-810
    • /
    • 2011
  • The public interest of global warming and energy shortage is gradually increased, and the related industries also have become interested in developing eco-friendly material and technology. Warm-mix asphalt (WMA) is a result of the developments to alleviate global warming and energy problems. This WMA is produced at lower temperatures than the temperature at which hot mix asphalt (HMA) is produced. Because most tests in Superpave are developed only for the performance and maintenance of HMA produced by hot temperatures, it is difficult for the tests to identify properly the material properties and then evaluate the performances between HMA and WMA. This study deals with the development of a new protocol to differentiate HMA and WMA performance, and especially the interfacial properties between asphalt and aggregate are targeted as the performance indicator; thus, an evaluation method and guideline are suggested. The concept and idea of the test method applied in this study were modified from the DSR moisture damage test protocol. In addition, TSR test was performed to affirm the relation between the asphalt-aggregate interface and the asphalt-aggregate mixture performances. The followings are the results of this study. Shear stress at 85% linear visco-elastic complex modulus (LVE $G^*$) can be a better parameter than LVE $G^*$, which can assess the interfacial or bonding performance between asphalt and aggregate. Moreover, measuring the bonding performance in thinner film thicknesses will be a better way to evaluate the real and field situation between asphalt and aggregate. The interfacial properties' criteria to apply the newly developed test and parameter should be developed, after the asphalt mixture criteria relating to the interfacial properties are completed.

A Study on the Technique and Process of Bending Wood

  • Kang, Hyung-Goo
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.459-468
    • /
    • 2010
  • Materials are such an important factor in designing furniture. Wood is the biggest part of furniture materials. While wood is soft, eco-friendly and natural material, it is variable because it is characterized by severe expansion and contraction. Thus, if the changeable characteristic of wood is not considered in furniture design, the good design of furniture cannot be produced. As one of the skills dealing with woods, bending is such a useful way for making various forms of furniture. While it has been used in furniture-making for a long time, wood processing techniques like steaming bending, bending with ammonia and high frequency bending has been advanced. As wood is a viscoelastic material and has some plasticity, beautiful curves can be created when force is applied. Therefore this paper studies the types of bending methods for furniture and each characteristic of them. Furthermore, this study classifies wood process according to suitability for mass production or small-scale production and researches the proper wood process by the forms and the way of furniture production. Also this study aims to help furniture designers and cabinet makers with wood bending.

  • PDF

Control of Late Blight of Tomato and Potato by Oilgochitosan (올리고키토산에 의한 토마토 역병과 감자 역병의 방제)

  • Cho, Yong-Ho;Choi, Gyung-Ja;Kim, Byung-Sup;Jang, Kyoung-Soo;Yoon, Mi-Young;Park, Myoung-Soo;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • Chitosan is a linear polysaccharide composed of randomly distributed ${\ss}$-(1-4)-linked D-glucosamine and Nacetyl-D-glucosamine. There have been many reports on the induced systemic resistance and in vivo antifungal activities of higher molecular weight chitosans with molecular weights over 3,000 amu (atomatic mass unit), but there are few papers on in vivo antifungal activities of low molecular weight chitosans (oligochitosans) with molecular weights less than 3,000 amu. In our study, an oligochitosan sample (320.3,000 amu) showed a potent 1-day protective activity with control values more than 94% at concentrations of 500 and 1,000 ${\mu}g$/ml especially against tomato late blight caused by Phytophthora infestans under growth chamber conditions. It also displayed a moderate 1-day protective activity with control values of 67.89% at concentrations of 500 and 1,000 ${\mu}g$/ml against wheat leaf rust and red pepper anthracnose. On the other hand, it showed a 16-hr curative activity against red pepper anthracnose, but not against tomato late blight and wheat leaf rust. In field experiments, oligochitosan effectively suppressed the development of late blight on potato and tomato plants with control values of 72% and 48%, respectively. The results strongly indicate that oligochitosan can be used as an eco-friendly organic material for the control of late blight on tomato and potato plants.