DOI QR코드

DOI QR Code

Development of Self-Repairing Smart Concrete Using Micro-Biologically Induced Calcite Precipitation

미생물의 방해석 석출 작용을 이용한 자기보수 스마트 콘크리트 개발에 관한 연구

  • Kim, Wha-Jung (School of Architecture and Civil Engineering, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences, Kyungpook National University) ;
  • Park, Sung-Jin (School of Life Sciences, Kyungpook National University) ;
  • Choi, Kil-Jun (School of Architecture and Civil Engineering, Kyungpook National University) ;
  • Chun, Woo-Young (School of Architecture and Civil Engineering, Kyungpook National University)
  • 김화중 (경북대학교 건축토목공학부) ;
  • 김사열 (경북대학교 생명과학부) ;
  • 박성진 (경북대학교 생명과학부) ;
  • 최길준 (경북대학교 건축토목공학부) ;
  • 천우영 (경북대학교 건축토목공학부)
  • Received : 2010.02.18
  • Accepted : 2010.04.14
  • Published : 2010.08.31

Abstract

This paper presents a study on the development of next generation smart concrete in an eco-friendly manner using micro-biologically induced calcite precipitation (MICP) via microbial biomineralization. It seems that currently, the reformation and functional improvement of concrete using MICP can be achieved using Sporosarcina pasteurii, which is a representative microorganism that produces calcite precipitation. Based on previous studies on MICP the biochemical tests and crystallinity evaluation of cement using sporoasrcina pasteurii and four additional micro-organisms from the concrete structures as identified by 16S rDNA sequence analysis were conducted. Also by applying the Sporosarcina pasteurii and separated four effective micro-organisms from the concrete structures to mortar, the compressive strength improvement by varying curing conditions, repair of crack were examined, and plans for future study were suggested. The effect of the application of effective micro-organisms can lead to the development of a new material that will contribute to resolution of environmental problems and facilitate repair work, and this can also serve as a new research theme in the future. In addition, the importance of this study is to use micro-organism, which is found common in concrete structures, this new microbial is not only environmentally safe but also persists in the natural environment for an extended period of time. Therefore, it seems to have a great potential to became a new environmentally low-burdened functional material.

이 연구는 미생물의 생체광물형성작용 중 미생물의 방해석 석출 작용(micro-biologically induced calcite precipitation, MICP)을 이용하여 환경적인 문제를 배려한 차세대 스마트 콘크리트의 개발이 목적이다. 현재 콘크리트의 개질(改質) 및 성능향상을 목적으로 미생물의 방해석 석출 작용을 이용한 기술은 대표적 미생물인 Sporosarcina pasteurii에 의해 그 가능성이 제안되어 왔다. 이 연구에서는 이러한 미생물의 방해석 석출작용을 이용하는 것으로서 선행 연구의 Sporosarcina pasteurii외에 콘크리트 구조물에서 탐색하여 16S rDNA 염기서열 분석법에 의해 동정된 4종의 신규 유용미생물자원들을 추가적으로 이용하였으며, 이렇게 확보된 방해석을 석출하는 유용미생물자원들에 대한 소개와 미생물의 방해석 석출 작용에 따른 시멘트 결정성을 평가하였다. 또한 콘크리트의 개질 및 성능 향상을 목적으로 이러한 유용미생물자원들을 우선적으로 모르타르 환경에 적용하여 양생조건별 압축강도의 특성을 평가하고, 모르타르에 인위적 균열을 만들어 미생물의 방해석 석출 작용에 따른 균열의 충전 가능성을 검토하였다. 이러한 유용미생물들의 적용에 따른 효과는 보수 기능뿐만 아니라 환경 문제를 배려한 새로운 재료로서의 개발로 이어져 향후 더욱 더 중요한 연구주제의 하나가 될 것으로 기대된다. 또한 이 연구의 큰 의미는 실제 콘크리트 구조물에 상생하고, 자연환경에서 방해석을 석출하는 미생물을 이용한다는 것이며, 긴 시간동안 자연환경에서 살아남은 이 미생물들은 환경적으로 안전할 뿐만 아니라 새로운 환경 저부하성 기능재료로서의 이용이 가능할 것으로 판단된다.

Keywords

References

  1. Lyon, E. V., “The Literature of Cement, Lime, Plaster, and Gypsum,” Jamerican Chemical Society, Vol. 78, 1968, pp. 122-141.
  2. Stocks-Fischer, S., Galinat, J. K., and Bang, S. S., “Microbiological Precipitation of $CaCO_3$,” Soil Biology and Biochemistry, Vol. 31, 1999, pp. 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  3. Choi, Y. W., Chung, J. S., Moon, D. J., and Shin, H. C., “A Study on Proportion of Normal-Strength Self-Compacting Concrete Using Ground Calcium Carbonate,” Journal of the Korea Society of Civil Engineers, Vol. 23, No. 4A, 2003, pp. 627-637.
  4. Moon, H. Y. and Jung, H. S., “Fundamental Study on the Utilization of the Ground Calcium Carbonate for a Concrete Admixture,” Journal of the Korea Society of Civil Engineers, Vol. 21, No. 6A, 2001, pp. 987-996.
  5. Ahn, J. W., Lee, J. S., Joo, S. M., Kim, H. S., Kim, J. K., Han, C., Kim, H., “Synthesis of Precipitated Calcium Carbonate in $Ca(OH)_{2}-CO_{2}-H_{2}O$ System by the Continuous Drop Method of $Ca(OH)_{2}$ Slurry,” Magazine of the Korea Ceramic Society, Vol. 39 No. 4, 2002, pp. 327-335. https://doi.org/10.4191/KCERS.2002.39.4.327
  6. Han, C. S., Lee, H. Y., and Roh. Y., “On Biologically Produced Nanomaterials,” Int. J. Nanotechnol, Vol. 3, Nos. 2-3, 2006, pp. 236-252. https://doi.org/10.1504/IJNT.2006.009582
  7. Bang, S. S., Galinat, J. K., and Ramakrishnan, V., “Calcite Precipitation Induced by Polyurethane-Immobilized Bacillus pasteurii,” Enzyme and Microbial Technology, Vol. 28, 2001, pp. 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3
  8. Bachmeier, K., Williams, A. E., Warmington, J., and Bang, S. S., “Urease Activity in Microbiologically-Induced Calcite Precipitation,” Journal of Biotechnology, Vol. 93, 2002, pp. 171-181. https://doi.org/10.1016/S0168-1656(01)00393-5
  9. Ramakrishnan, V., Ramesh, K. P., and Bang, S. S., “Bacterial Concrete,” Proceedings of SPIE’s 2000 Symposium on Smart Materials, Vol. 4234, Melbourne, Australia, 2000, pp. 168-176.
  10. Ramakrishnan, V., Panchalan, R. K., and Bang, S. S., “Bacterial Concrete-A Concrete for the Future in Serviceability of Concrete,” American Concrete Institute, SP-225, 2005, pp. 37-54.
  11. Rapolu, R., Panchalan, R. K., Ramakrishnam, V., and Bang, S. S., “Durability Characterization of Bacterial Concrete-A Smart Biomaterial,” Proceedings of the ICFRC International Conference on Fibre Composites, High Performance Concretes and Smart Materials, Chennai, India, 2004, pp. 1047-1056.
  12. Vemuri, S. L., Panchalan, R. K., Rapolu, R., Ramakrishnan, V., and Bang, S. S., “Experimental Investigation of the Plastic Shrinkage Crack Reduction Potential of Bacteria in Concrete,” Proceedings of the International Conference on Advances in Concrete and Construction(ICACC), Hyderabad, India, 2004, pp. 125-139.
  13. Achal V., Mukherjee A., Basu P. C. and Reddy M. S., “Lactose Mother Liquor as an Alternative Nutrient Source for Microbial Concrete Production by Sporosarcina Pasteurii,” Journal of Industrial Microbiology and Biotechnology, Vol. 36, 2009, pp. 433-438. https://doi.org/10.1007/s10295-008-0514-7
  14. Bang, S. S.. “The Present and Future of Biosealant in Crack Remediation,” Proceedings of the ICFRC International Conference on Fibre Composites, High Performance Concretes and Smart Materials, Chennai, India, 2004, pp. 991-1001.
  15. Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., and Ghim, S. Y., “Characterization of Calcium Carbonate-Forming Bacteria,” Proceeding of 2009 KMB-Youngnam Branch Conference, Kyung-Joo, Korea, Feb. 20, 2009, 48 pp.
  16. Roh, Y., Gao, H., Vali, H., Gao, W., Kennedy, D. W., Yang, Z., Gao, W., Dohnalkova, A. C., Stapleton, R. D., Moon, J. W., Phelps, T. J., Fredrickson, J. K., and Zhoe, J., “Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4,” Applied and Environmental Microbiology, Vol. 72, No. 5, 2006, pp. 3236-3244. https://doi.org/10.1128/AEM.72.5.3236-3244.2006
  17. Benjamin, S. W., Microbes and Society, World Science Publishing, 2009, pp. 120-128.
  18. Kim, W. J., Kim S. T., Park., S. J., Ghim, S. Y., and Chun, W. Y., “A Study on the Development of Self-Healing Smart Concrete Using Microbial Biomineralization,” Journal of the Korea Concrete lnstitute, Vol. 21, No. 4, 2009, pp. 501-511. https://doi.org/10.4334/JKCI.2009.21.4.501