• 제목/요약/키워드: Eco powder

검색결과 147건 처리시간 0.026초

나노 분말 복합체 형성을 통한 PVDF 기반 에너지 하베스팅 소자 성능 향상 기술 동향 (Recent Development in Performance Enhancement of PVDF-Nanopowder Composite-based Energy Harvesting Devices)

  • 최건주;박일규
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.247-255
    • /
    • 2020
  • Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the ν-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.

차세대 2차원 소재, MXenes의 연구 동향 (Research trends of MXenes as the Next-generation Two-dimensional Materials)

  • 이호준;윤예준;장진광;변종민
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.150-163
    • /
    • 2021
  • Interest in eco-friendly materials with high efficiencies is increasing significantly as science and technology undergo a paradigm shift toward environment-friendly and sustainable development. MXenes, a class of two-dimensional inorganic compounds, are generally defined as transition metal carbides or nitrides composed of few-atoms-thick layers with functional groups. Recently MXenes, because of their desirable electrical, thermal, and mechanical properties that emerge from conductive layered structures with tunable surface terminations, have garnered significant attention as promising candidates for energy storage applications (e.g., supercapacitors and electrode materials for Li-ion batteries), water purification, and gas sensors. In this review, we introduce MXenes and describe their properties and research trends by classifying them into two main categories: transition metal carbides and nitrides, including Ti-based MXenes, Mo-based MXenes, and Nb-based MXenes.

Effect of Oxidation Behavior of (Nd,Dy)-Fe-B Magnet on Heavy Rare Earth Extraction Process

  • 박상민;남선우;이상훈;송명석;김택수
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.91-96
    • /
    • 2021
  • Rare earth magnets with excellent magnetic properties are indispensable in the electric device, wind turbine, and e-mobility industries. The demand for the development of eco-friendly recycling techniques has increased to realize sustainable green technology, and the supply of rare earth resources, which are critical for the production of permanent magnets, are limited. Liquid metal extraction (LME), which is a type of pyrometallurgical recycling, is known to selectively extract the metal forms of rare earth elements. Although several studies have been carried out on the formation of intermetallic compounds and oxides, the effect of oxide formation on the extraction efficiency in the LME process remains unknown. In this study, microstructural and phase analyses are conducted to confirm the oxidation behavior of magnets pulverized by a jaw crusher. The LME process is performed with pulverized scrap, and extraction percentages are calculated to confirm the effect of the oxide phases on the extraction of Dy during the reaction. During the L ME process, Nd is completely extracted after 6 h, while Dy remains as Dy2Fe17 and Dy-oxide. Because the decomposition rate of Dy2Fe17 is faster than the reduction rate of Dy-oxide, the importance of controlling Dy-oxide on Dy extraction is confirmed.

In-situ functionalized biomass derived graphite-supported BiFeO3 for eradication of pollutants

  • Deepeka, Deepeka;Paramdeep, Kaur;Jyoti, Jyoti;Sandeep, Bansal;Sonal, Singhal
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.527-543
    • /
    • 2022
  • A novel, green, versatile and magnetically retrievable BiFeO3/CDR (Bismuth ferrite/coriander) nanocomposites were fabricated via simple wet chemical method utilizing in situ functionalized, cheap coriander seed powder (CDR 5%, 10%, 15% and 20 wt%) as a fuel to enhance the efficiency of pristine BiFeO3. A comparative study was performed between BiFeO3/CDR and BiFeO3/CNT (Bismuth ferrite/carbon nanotubes) nanocomposites for the removal of various hazardous pollutants from waste water. The successful synthesis of the fabricated nanomaterials was monitored via FT-IR, Powder XRD, FE-SEM, CV, VSM, CHNS/O and XPS studies. The synthesized nanomaterials were employed for the oxidative degradation of Carbol fuchsin, Reactive black 5, Ciprofloxacin and Doxorubicin; adsorption of a pesticide malathion; and reduction studies for Para-nitrophenol (PNP). The fabricated nanomaterials (BiFeO3/CDR) showcased excellent efficiency and comparable results with (BiFeO3/CNT) for the removal of model pollutants. Moreover, synthesized green heterojunction was also testified for mixture of textile and pharmaceutical waste. Hence CDR can be utilized as a better alternative of CNTs.

NH4OH를 이용한 적황색 β-FeOOH 나노로드 길이에 따른 색상제어 연구 (Coloration Study of Red/Yellow β-FeOOH Nanorod using NH4OH Solution)

  • 유리;김일주;윤지연;최은영;피재환;김유진
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.343-347
    • /
    • 2016
  • Fe-based pigments have attracted much interest owing to their eco-friendliness. In particular, the color of nanosized pigments can be tuned by controlling their size and morphology. This study reports on the effect of length on the coloration of ${\beta}$-FeOOH pigments prepared using an $NH_4OH$ solution. First, rod-type ${\beta}$-FeOOH is prepared by the hydrolysis of $FeCl_3{\cdot}6H_2O$ and $NH_4OH$. When the amount of $NH_4OH$ is increased, the length of the rods decreases. Thus, the length of the nanorods can be adjusted from 10 nm to 300 nm. The color of ${\beta}$-FeOOH changes from orangered to yellow depending on the length of ${\beta}$-FeOOH. The color and phase structure of ${\beta}$-FeOOH is characterized by UV-vis spectroscopy, CIE Lab color parameter measurements, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발 (Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide)

  • 정미원;임샛별;문보람;홍태환
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

고강도 콘크리트의 내화성능 용도에 따른 FRP재활용 공정 개발 (Development of FRP Recycling Process for Regenerating Applications of Fire Resistance Performance of High Strength Concrete)

  • 이승희;박종원;윤구영
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권3호
    • /
    • pp.207-215
    • /
    • 2015
  • 환경문제를 야기시켰던 해상용 FRP재활용에 대해 지난 10여 년간 다양한 국가적 지원이 이루어져서 폐FRP로부터 콘크리트 강화용 섬유 제작이 진행되어 왔다. 이렇게 제작된 강화 콘크리트에 대해 구조적 능력까지 시험한 바 있다. 시험 테스트 결과 재활용 FRP 가루를 사용한 콘크리트는 고강도 콘크리트의 압축강도를 감소시키지 않았을 뿐 만 아니라, 고강도 콘크리트의 내폭 특성을 상당히 증대시켰다. 그러나 폐FRP로부터 매트층의 분리 방법이 안정화되지 않았기 때문에 폐FRP 섬유 가루의 특성에 대한 연구는 종결되지 않았다. 본 연구는 폐FRP로부터 매트층을 분리하는 효과적이며 친환경적인 새로운 방법에 관한 것이며, 이것은 내폭성이 강한 제품이나 구조물에 적합한 FRP섬유가루 생산 공정에 유용한 재활용 공정이라 생각한다.

수증기 메탄 개질 반응을 이용한 수소 생산용 Ni-Cr-Al 다공체 지지 촉매의 제조, 기계적 안정성 및 수소 환원 효율 (Fabrication of Ni-Cr-Al Metal Foam-Supported Catalysts for the Steam Methane Reforming (SMR), and its Mechanical Stability and Hydrogen Yield Efficiency)

  • 김규식;강태훈;공만식;박만호;윤중열;안지혜;이기안
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.201-207
    • /
    • 2021
  • Ni-Cr-Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol-gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni-Cr-Al foam without cracks or spallation. The measured compressive yield strengths are 2-3 MPa at room temperature and 1.5-2.2 MPa at 750℃ regardless of sample size. The specimens exhibit a weight loss of up to 9-10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.

에틸렌-프로필렌 고무 스크랩을 이용한 친환경소재 개발에 관한 연구 : EPDM과 PP의 기능화 (A Study on the Development of Eco-friendly Materials Using EPDM Scrap : Functionalization of EPDM and PP)

  • 김섭;정경호
    • 청정기술
    • /
    • 제15권3호
    • /
    • pp.180-185
    • /
    • 2009
  • 자동차용 웨더스트립 제조공정 중 발생하는 에틸렌-프로필렌 고무 스크랩을 고온전단분쇄기를 이용하여 표면활성화 된 분말을 얻은 후 이를 폴리프로필렌과 블렌드하여 열가소성탄성체를 제조하기 위한 기초연구를 수행하였다. 에틸렌-프로필렌 고무 스크랩 분쇄 시 표면활성제를 1.5 phr 첨가하면 최적의 표면활성화 된 분말을 얻을 수 있었다. 폴리프로필렌의 경우는 maleic anhydride를 반응블렌드에 의해 그라프트시켜 기능화 하였다. 기능화된 에틸렌-프로펄렌 분말과 폴리프로필렌을 블렌드하여 열가소성탄성체를 제조할 때 계면젖음 특성이 중요하기 때문에 계면젖음성을 향상시키기 위하여 상용화제로 poly(ethylene-co-acrylic arid)를 폴리프로필렌에 첨가하였다. Poly(ethylene-co-acrylic acid)는 폴리프로필렌의 표면장력을 감소시켰으며 이로 인해 에틸렌-프로필렌 분말과의 계면젖음성이 크게 증진될 것으로 기대된다.

비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성 (Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent)

  • 나호성;박민경;임형미;김대성
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.