DOI QR코드

DOI QR Code

In-situ functionalized biomass derived graphite-supported BiFeO3 for eradication of pollutants

  • Received : 2021.05.07
  • Accepted : 2022.09.14
  • Published : 2022.12.25

Abstract

A novel, green, versatile and magnetically retrievable BiFeO3/CDR (Bismuth ferrite/coriander) nanocomposites were fabricated via simple wet chemical method utilizing in situ functionalized, cheap coriander seed powder (CDR 5%, 10%, 15% and 20 wt%) as a fuel to enhance the efficiency of pristine BiFeO3. A comparative study was performed between BiFeO3/CDR and BiFeO3/CNT (Bismuth ferrite/carbon nanotubes) nanocomposites for the removal of various hazardous pollutants from waste water. The successful synthesis of the fabricated nanomaterials was monitored via FT-IR, Powder XRD, FE-SEM, CV, VSM, CHNS/O and XPS studies. The synthesized nanomaterials were employed for the oxidative degradation of Carbol fuchsin, Reactive black 5, Ciprofloxacin and Doxorubicin; adsorption of a pesticide malathion; and reduction studies for Para-nitrophenol (PNP). The fabricated nanomaterials (BiFeO3/CDR) showcased excellent efficiency and comparable results with (BiFeO3/CNT) for the removal of model pollutants. Moreover, synthesized green heterojunction was also testified for mixture of textile and pharmaceutical waste. Hence CDR can be utilized as a better alternative of CNTs.

Keywords

Acknowledgement

The authors are thankful to University Grants Commission (UGC) (Ref no: 27/(CSIR-UGC NET DEC. 2017) (R.No. 107573), and DST/TMD(EWO)/OWUIS-2018/RS-15(G) dated: 15/11/2019 for financial support. The Authors are obliged to Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh for providing instrumentations facilities.

References

  1. Aviles, F., Cauich-Rodriguez, J.V., Moo-Tah, L. May-Pat, A. and Vargas-Coronado, R. (2009), "Evaluation of mild acid oxidation treatments for MWCNT functionalization", Carbon, 47, 2970-2975. https://doi.org/10.1016/j.carbon.2009.06.044.
  2. Chatterjee, S., Das, S.K., Chakravarty, R., Chakrabarti, A., Ghosh, S. and Guha, A.K. (2010), "Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass", J. Hazard. Mater., 174(1-3), 47-53. https://doi.org/10.1016/j.jhazmat.2009.09.014.
  3. Corbett, J.F. (1972) "Pseudo first-order kinetics", J. Chem. Educ., 49(10), 663. https://doi.org/10.1021/ed049p663.
  4. Dai, J.F., Xian, T., Di, L.J. and Yang, H. (2013), "Preparation of BiFeO3 -graphene nanocomposites and their enhanced photocatalytic activities", J. Nanomater., 2013, https://doi.org/10.1155/2013/642897.
  5. Dehghani, M.H., Niasar, Z.S., Mehrnia, M.R., Shayeghi, M., Al-Ghouti, M.A., Heibati, B., McKay, G. and Yetilmezsoy, K. (2017), "Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes", Chem. Eng. J., 310, 22-32. http://doi.org/10.1016/j.cej.2016.10.057.
  6. Delahay, P. (1951), Recent advances in oscillographic polarography", Anal. Chim. Acta., 5, 129-136. https://doi.org/10.1016/S0003-2670(00)87521-2.
  7. Donia, A.M., Atia, A.A., Hussien, R.A. and Rashad, R.T., (2012), "Comparative study on the adsorption of malathion pesticide by different adsorbents from aqueous solution", Desalin. Water Treat., 47(1-3), 300-309. https://doi.org/10.1080/19443994.2012.696419.
  8. Ghosh, S., Dasgupta, S., Sen, A. and Sekhar Maiti, H. (2005), "Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route", J. Am. Ceram. Soc., 88(5), 1349-1352. https://doi.org/10.1111/j.1551-2916.2005.00306.x.
  9. Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111-121 http://doi.org/10.12989/anr.2015.3.2.111.
  10. Goyal, A., Bansal, S. and Singhal, S. (2014), "Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites", Int. J. Hydrogen Energy., 39(7), 4895-4908. https://doi.org/10.1016/j.ijhydene.2014.01.050.
  11. Guo, P., Tang, L., Tang, J., Zeng, G., Huang, B., Dong, H., Zhang, Y., Zhou, Y., Deng, Y., Ma, L. and Tan, S. (2016), "Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon", J. Colloid Interf. Sci., 469, 78-85. https://doi.org/10.1016/j.jcis.2016.01.063.
  12. Guo, R., Fang, L., Dong, W., Zheng, F. and Shen, M. (2010), "Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles", J. Phys. Chem. C., 114(49), 21390-21396. https://doi.org/10.1021/jp104660a.
  13. Guo, W., Zhang, Z., Lin, H. and Cai, L. (2020), "Z-scheme BiFeO3-CNTs-PPy as a highly effective and stable photocatalyst for selective oxidation of benzyl alcohol under visible-light irradiation", Mol. Catal., 492, 111011. https://doi.org/10.1016/j.mcat.2020.111011
  14. Han, F., Xu, X., Fu, Y. and Wang, X. (2019), "Synthesis of rice-husk-carbon-supported nickel ferrite catalyst for reduction of nitrophenols", J. Nanosci. Nanotechnol., 19(9), 5838-5846. https://doi.org/10.1166/jnn.2019.16567.
  15. Harish, K.N., Bhojya Naik, H.S., Prashanth Kumar, P.N. and Viswanath, R. (2012), "Synthesis, enhanced optical and photocatalytic study of Cd-Zn ferrites under sunlight", Catal. Sci. Technol., 2, 1033-1039. https://doi.org/10.1039/c2cy00503d.
  16. Hu, Y., Fei, L., Zhang, Y., Yuan, J. Wang, Y. and Gu, H. (2011), "Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature", J. Nanomater., 2011, https://doi.org/10.1155/2011/797639.
  17. Huang, H.B., Wang, Y., Jiao, W.B., Cai, F.Y. Shen, M., Zhou, S.G., Cao, H.L., Lu J. and R. Cao, (2018), "Lotus-leaf-derived activated-carbon-supported nano-CdS as energy-efficient photocatalysts under visible irradiation", ACS Sustain. Chem. Eng., 6(6), 7871-7879. https://doi.org/10.1021/acssuschemeng.8b01021.
  18. Irfan, S., Zhuanghao, Z. Li, F., Chen, Y.X., Liang, G.X. Luo, J.T. and Ping, F. (2019), "Critical review: Bismuth ferrite as an emerging visible light active nanostructured photocatalyst", J. Mater. Res., 8(6), 6375-6389. https://doi.org/10.1016/j.jmrt.2019.10.004.
  19. Jackson, S.T. and Nuzzo, R.G. (1995), "Determining hybridization differences for amorphous carbon from the XPS C 1s envelope", Appl. Surf. Sci., 90(2), 195-203. https://doi.org/10.1016/0169-4332(95)00079-8.
  20. Kang, S.T., Seo, J.Y. and. Park, S.H (2015), "The characteristics of CNT/cement composites with acid-treated MWCNTs", Adv. Mater. Sci. Eng., 2015. http://doi.org/10.1155/2015/308725.
  21. Kapoor, S., Sheoran, A., Riyaz, M. Agarwal, J., Goel, N. and Singhal, S. (2020), "Enhanced catalytic performance of Cu/Cu2O nanoparticles via introduction of graphene as support for reduction of nitrophenols and ring opening of epoxides with amines established by experimental and theoretical investigations", J. Catal., 381, 329-346. https://doi.org/10.1016/j.jcat.2019.11.012.
  22. Kaur, J., Gupta, K., Kumar, V., Bansal, S. and Singhal, S. (2016), "Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater", Ceram. Int., 42(2), 2378-2385. https://doi.org/10.1016/j.ceramint.2015.10.035.
  23. Kaur, P., Singh, S., Kumar, V., Tikoo, K.B., Chudasama, B., Kaushik, A. and Singhal, S. (2019), "Interesting makeover of strontium hexaferrites for environment remediation from excellent photocatalysts to outstanding adsorbents via inclusion of Mn3+ into the lattice", J. Alloys Compd., 791, 508-521. https://doi.org/10.1016/j.jallcom.2019.03.312.
  24. Komal, Gupta, K., Kumar, V., Tikoo, K.B., Kaushik, A. and Singhal, S. (2020), "Encrustation of cadmium sulfide nanoparticles into the matrix of biomass derived silanized cellulose nanofibers for adsorptive detoxification of pesticide and textile waste", Chem. Eng. J., 385, 123700. https://doi.org/10.1016/j.cej.2019.123700.
  25. Lam, S.M., Sin, J.C. and Mohamed, A.R. (2016), "A review on photocatalytic application of g-C3,/sub>N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater", Mater. Sci. Semicond. Proc., 47, 62-84. https://doi.org/10.1016/j.mssp.2016.02.019.
  26. Li, T., Shen, J., Li, N. and Ye, M. (2013), "Hydrothermal preparation, characterization and enhanced properties of reduced graphene-BiFeO3 nanocomposite", Mater. Lett., 91, 42-44. https://doi.org/10.1016/j.matlet.2012.09.045.
  27. Li, Z., Shen, Y., Guan, Y., Hu, Y., Lin, Y. and Nan, C.W. (2014), "Bandgap engineering and enhanced interface coupling of graphene-BiFeO3 nanocomposites as efficient photocatalysts under visible light", J. Mater. Chem. A., 2(6), 1967-1973. https://doi.org/10.1039/c3ta14269h.
  28. Massad, Y., Hanbali, G., Jodeh, S., Hamed, O., Bzour, M., Dagdag, O. and Samhan, S., (2022), "The efficiency of removal of organophosphorus malathion pesticide using functionalized multi-walled carbon nanotube: Impact of Dissolved Organic Matter (DOM)", Sep. Sci. Technol., 57(1), 1-12. https://doi.org/10.1080/01496395.2021.1881118.
  29. Mukherjee, A., Chakrabarty, S., Kumari, N., Su, W.N. and Basu, S. (2018), "Visible-light-mediated electrocatalytic activity in reduced graphene oxide-supported bismuth ferrite" Acs Omega, 3(6), 946-5957. https://doi.org/10.1021/acsomega.8b00708.
  30. Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., Arras, M., Fonseca, A., Nagy, J.B. and Lison, D. (2005), "Respiratory toxicity of multi-wall carbon nanotubes", Toxicol. Appl. Pharmacol., 207(14), 221-231. https://doi.org/10.1016/j.taap.2005.01.008.
  31. Niaei, A.H. and Rostamizadeh M. (2020), "Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater", Adv. Nano. Res., 9(3), 173-181. http://doi.org/10.12989/anr.2020.9.3.173.
  32. Noorimotlagh, Z., Kazeminezhad, I., Jaafarzadeh, N., Ahmadi, M., Ramezani, Z. and Martinez, S. (2018), "The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism", J. Hazard. Mater., 350, 108-120. https://doi.org/10.1016/j.jhazmat.2018.02.022.
  33. Norizan, M.N., Moklis, M.H., Demon, S.Z.N., Halim, N.A., Samsuri, A., Mohamad, I.S., Knight, V.F. and Abdullah, N. (2020), "Carbon nanotubes: functionalisation and their application in chemical sensors", RSC Adv., 10(71), 43704-43732. https://doi.org/10.1039/D0RA09438B.
  34. Ortiz-Quinonez, J.L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaria, H., Betancourt, I. Santiago-Jacinto, P. and Nava-Etzana, N. (2013), "Easy synthesis of high-purity BiFeO3 nanoparticles: New insights derived from the structural, optical, and magnetic characterization", Inorg. Chem., 52(18), 10306-10317. https://doi.org/10.1021/ic400627c.
  35. Padmavathy, K.S., Madhu, G. and Haseena P.V. (2016), "A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles", Procedia Technol., 24, 585-594. https://doi.org/10.1016/j.protcy.2016.05.127.
  36. Pradeep, A. and Chandrasekaran, G. (2006), "FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4", Mater. Lett., 60(3), 371-374. https://doi.org/10.1016/j.matlet.2005.08.053.
  37. Prakash, V., Sharma, S., Kaur, J. and Mehta, S.K. (2018), "Graphene oxide/lysine composite-a potent electron mediator for detection of diazepam", Anal. Methods., 10(41), 5038-5046. https://doi.org/10.1039/c8ay01429a.
  38. Randles, J.E. (1948), "A cathode ray polarograph. Part II: The current-voltage curves", Trans. Faraday Soc., 44, 327-338. https://doi.org/10.1039/TF9484400327
  39. Rao, R.A.K. and Kashifuddin, M. (2012), "Adsorption properties of coriander seed powder (Coriandrum sativum): Extraction and pre-concentration of Pb (II), Cu (II) and Zn (II) ions from aqueous solution", Adsorp. Sci. Technol., 30(2), 127-146. https://doi.org/10.1260/0263-6174.30.2.127.
  40. Sevcik, A. (1948), "Oscillographic polarography with periodical triangular voltage", Collect. Czechoslov Chem. Commun., 13, 349-377. https://doi.org/10.1135/cccc19480349.
  41. Shah, A.H. and Rather, M.A. (2021), "Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis", Adv. Nano Res., 10(4), 397-414. http://dx.doi.org/10.12989/anr.2021.10.4.397.
  42. Shen, Y., Li, Z., Yang, C., Lei, Y., Guan, Y., Lin, Y., Liu D. and Nan, C.W. (2013), "Significant enhancement in the visible light photocatalytic properties of BiFeO3-graphene nanohybrids", J. Mater. Chem. A, 1(3), 823-829. https://doi.org/10.1039/C2TA00141A.
  43. Shin, K.S., Cho, Y.K., Choi, J.Y. and Kim, K. (2012), "Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols", Appl. Catal. A Gen., 413-414, 170-175. https://doi.org/10.1016/j.apcata.2011.11.006.
  44. Soleimani, H., Yahya, N., Baig, M.K., Khodapanah, L., Sabet, M., Burda, M., Oechsner, A. and Awang, M. (2015), "Synthesis of carbon nanotubes for oil-water interfacial tension reduction", Oil Gas Res., 1(1),1000104. https://doi.org/10.4172/2472-0518.1000104.
  45. Soltani, N., Saion, E., Mahmood Mat Yunus, W., Navasery, M., Bahmanrokh, G., Erfani, M., Zare, M.R. and Gharibshahi, E. (2013), "Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles", Sol. Energy., 97, 147-154. https://doi.org/10.1016/j.solener.2013.08.023.
  46. Stromme, M., Niklasson, G.A. and Granqvist, C.G. (1995), "Voltammetry on fractals", Solid State Commun., 96(3), 151-154. https://doi.org/10.1016/0038-1098(95)00363-0.
  47. Tauc, J., Grigorovici, R. and Vancu, A. (1966), "Optical properties and electronic structure of amorphous germanium", Phys. Status Solidi B, 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224.
  48. Tenorio-Gonzalez, F.N., Bolarin-Miro, A.M., Sanchez-De Jesus, F., Vera-Serna, P. Menendez-Gonzalez, N. and Sanchez-Marcos, J. (2017), "Crystal structure and magnetic properties of high Mn-doped strontium hexaferrite", J. Alloys Compd., 695, 2083-2090. https://doi.org/10.1016/j.jallcom.2016.11.047.
  49. Tsuboy, M.S., Angeli, J.P.F., Mantovani, M.S., Knasmuller, S., Umbuzeiro, G.A. and Ribeiro, L.R. (2007), "Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2", Toxicol. Vitr., 21(8),1650-1655. https://doi.org/10.1016/j.tiv.2007.06.020.
  50. Wang, G., Yuan, S., Wu, Z., Liu, W., Zhan, H., Liang, Y., Chen, X., Ma, B. and Bi, S. (2019), "Ultra-low-loading palladium nanoparticles stabilized on nanocrystalline Polyaniline (Pd@PANI): A efficient, green, and recyclable catalyst for the reduction of nitroarenes", Appl. Organomet. Chem., 33(11), 5159. https://doi.org/10.1002/aoc.5159.
  51. Wang, X., Fan, J., Qian, F. and Min, Y. (2016), "Magnetic BiFeO3 grafted with MWCNT hybrids as advanced photocatalysts for removing organic contamination with a high concentration", RSC Adv., 6(55), 49966-49972. https://doi.org/10.1039/c6ra08316a.