Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.6.527

In-situ functionalized biomass derived graphite-supported BiFeO3 for eradication of pollutants  

Deepeka, Deepeka (Department of Chemistry, Panjab University)
Paramdeep, Kaur (Department of Chemistry, Panjab University)
Jyoti, Jyoti (Department of Chemistry, Panjab University)
Sandeep, Bansal (Department of Science and Technology)
Sonal, Singhal (Department of Chemistry, Panjab University)
Publication Information
Advances in nano research / v.13, no.6, 2022 , pp. 527-543 More about this Journal
Abstract
A novel, green, versatile and magnetically retrievable BiFeO3/CDR (Bismuth ferrite/coriander) nanocomposites were fabricated via simple wet chemical method utilizing in situ functionalized, cheap coriander seed powder (CDR 5%, 10%, 15% and 20 wt%) as a fuel to enhance the efficiency of pristine BiFeO3. A comparative study was performed between BiFeO3/CDR and BiFeO3/CNT (Bismuth ferrite/carbon nanotubes) nanocomposites for the removal of various hazardous pollutants from waste water. The successful synthesis of the fabricated nanomaterials was monitored via FT-IR, Powder XRD, FE-SEM, CV, VSM, CHNS/O and XPS studies. The synthesized nanomaterials were employed for the oxidative degradation of Carbol fuchsin, Reactive black 5, Ciprofloxacin and Doxorubicin; adsorption of a pesticide malathion; and reduction studies for Para-nitrophenol (PNP). The fabricated nanomaterials (BiFeO3/CDR) showcased excellent efficiency and comparable results with (BiFeO3/CNT) for the removal of model pollutants. Moreover, synthesized green heterojunction was also testified for mixture of textile and pharmaceutical waste. Hence CDR can be utilized as a better alternative of CNTs.
Keywords
adsorption; Bismuth ferrite; CNTs; eco-friendly alternative; graphite; oxidative degradation; reduction; water treatment;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Rao, R.A.K. and Kashifuddin, M. (2012), "Adsorption properties of coriander seed powder (Coriandrum sativum): Extraction and pre-concentration of Pb (II), Cu (II) and Zn (II) ions from aqueous solution", Adsorp. Sci. Technol., 30(2), 127-146. https://doi.org/10.1260/0263-6174.30.2.127.   DOI
2 Sevcik, A. (1948), "Oscillographic polarography with periodical triangular voltage", Collect. Czechoslov Chem. Commun., 13, 349-377. https://doi.org/10.1135/cccc19480349.   DOI
3 Shah, A.H. and Rather, M.A. (2021), "Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis", Adv. Nano Res., 10(4), 397-414. http://dx.doi.org/10.12989/anr.2021.10.4.397.   DOI
4 Shen, Y., Li, Z., Yang, C., Lei, Y., Guan, Y., Lin, Y., Liu D. and Nan, C.W. (2013), "Significant enhancement in the visible light photocatalytic properties of BiFeO3-graphene nanohybrids", J. Mater. Chem. A, 1(3), 823-829. https://doi.org/10.1039/C2TA00141A.   DOI
5 Shin, K.S., Cho, Y.K., Choi, J.Y. and Kim, K. (2012), "Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols", Appl. Catal. A Gen., 413-414, 170-175. https://doi.org/10.1016/j.apcata.2011.11.006.   DOI
6 Soleimani, H., Yahya, N., Baig, M.K., Khodapanah, L., Sabet, M., Burda, M., Oechsner, A. and Awang, M. (2015), "Synthesis of carbon nanotubes for oil-water interfacial tension reduction", Oil Gas Res., 1(1),1000104. https://doi.org/10.4172/2472-0518.1000104.   DOI
7 Soltani, N., Saion, E., Mahmood Mat Yunus, W., Navasery, M., Bahmanrokh, G., Erfani, M., Zare, M.R. and Gharibshahi, E. (2013), "Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles", Sol. Energy., 97, 147-154. https://doi.org/10.1016/j.solener.2013.08.023.   DOI
8 Stromme, M., Niklasson, G.A. and Granqvist, C.G. (1995), "Voltammetry on fractals", Solid State Commun., 96(3), 151-154. https://doi.org/10.1016/0038-1098(95)00363-0.   DOI
9 Tauc, J., Grigorovici, R. and Vancu, A. (1966), "Optical properties and electronic structure of amorphous germanium", Phys. Status Solidi B, 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224.   DOI
10 Tenorio-Gonzalez, F.N., Bolarin-Miro, A.M., Sanchez-De Jesus, F., Vera-Serna, P. Menendez-Gonzalez, N. and Sanchez-Marcos, J. (2017), "Crystal structure and magnetic properties of high Mn-doped strontium hexaferrite", J. Alloys Compd., 695, 2083-2090. https://doi.org/10.1016/j.jallcom.2016.11.047.   DOI
11 Tsuboy, M.S., Angeli, J.P.F., Mantovani, M.S., Knasmuller, S., Umbuzeiro, G.A. and Ribeiro, L.R. (2007), "Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2", Toxicol. Vitr., 21(8),1650-1655. https://doi.org/10.1016/j.tiv.2007.06.020.   DOI
12 Wang, G., Yuan, S., Wu, Z., Liu, W., Zhan, H., Liang, Y., Chen, X., Ma, B. and Bi, S. (2019), "Ultra-low-loading palladium nanoparticles stabilized on nanocrystalline Polyaniline (Pd@PANI): A efficient, green, and recyclable catalyst for the reduction of nitroarenes", Appl. Organomet. Chem., 33(11), 5159. https://doi.org/10.1002/aoc.5159.   DOI
13 Wang, X., Fan, J., Qian, F. and Min, Y. (2016), "Magnetic BiFeO3 grafted with MWCNT hybrids as advanced photocatalysts for removing organic contamination with a high concentration", RSC Adv., 6(55), 49966-49972. https://doi.org/10.1039/c6ra08316a.   DOI
14 Aviles, F., Cauich-Rodriguez, J.V., Moo-Tah, L. May-Pat, A. and Vargas-Coronado, R. (2009), "Evaluation of mild acid oxidation treatments for MWCNT functionalization", Carbon, 47, 2970-2975. https://doi.org/10.1016/j.carbon.2009.06.044.   DOI
15 Chatterjee, S., Das, S.K., Chakravarty, R., Chakrabarti, A., Ghosh, S. and Guha, A.K. (2010), "Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass", J. Hazard. Mater., 174(1-3), 47-53. https://doi.org/10.1016/j.jhazmat.2009.09.014.   DOI
16 Corbett, J.F. (1972) "Pseudo first-order kinetics", J. Chem. Educ., 49(10), 663. https://doi.org/10.1021/ed049p663.   DOI
17 Donia, A.M., Atia, A.A., Hussien, R.A. and Rashad, R.T., (2012), "Comparative study on the adsorption of malathion pesticide by different adsorbents from aqueous solution", Desalin. Water Treat., 47(1-3), 300-309. https://doi.org/10.1080/19443994.2012.696419.   DOI
18 Dai, J.F., Xian, T., Di, L.J. and Yang, H. (2013), "Preparation of BiFeO3 -graphene nanocomposites and their enhanced photocatalytic activities", J. Nanomater., 2013, https://doi.org/10.1155/2013/642897.   DOI
19 Dehghani, M.H., Niasar, Z.S., Mehrnia, M.R., Shayeghi, M., Al-Ghouti, M.A., Heibati, B., McKay, G. and Yetilmezsoy, K. (2017), "Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes", Chem. Eng. J., 310, 22-32. http://doi.org/10.1016/j.cej.2016.10.057.   DOI
20 Delahay, P. (1951), Recent advances in oscillographic polarography", Anal. Chim. Acta., 5, 129-136. https://doi.org/10.1016/S0003-2670(00)87521-2.   DOI
21 Ghosh, S., Dasgupta, S., Sen, A. and Sekhar Maiti, H. (2005), "Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route", J. Am. Ceram. Soc., 88(5), 1349-1352. https://doi.org/10.1111/j.1551-2916.2005.00306.x.   DOI
22 Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111-121 http://doi.org/10.12989/anr.2015.3.2.111.   DOI
23 Goyal, A., Bansal, S. and Singhal, S. (2014), "Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites", Int. J. Hydrogen Energy., 39(7), 4895-4908. https://doi.org/10.1016/j.ijhydene.2014.01.050.   DOI
24 Han, F., Xu, X., Fu, Y. and Wang, X. (2019), "Synthesis of rice-husk-carbon-supported nickel ferrite catalyst for reduction of nitrophenols", J. Nanosci. Nanotechnol., 19(9), 5838-5846. https://doi.org/10.1166/jnn.2019.16567.   DOI
25 Guo, P., Tang, L., Tang, J., Zeng, G., Huang, B., Dong, H., Zhang, Y., Zhou, Y., Deng, Y., Ma, L. and Tan, S. (2016), "Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon", J. Colloid Interf. Sci., 469, 78-85. https://doi.org/10.1016/j.jcis.2016.01.063.   DOI
26 Guo, R., Fang, L., Dong, W., Zheng, F. and Shen, M. (2010), "Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles", J. Phys. Chem. C., 114(49), 21390-21396. https://doi.org/10.1021/jp104660a.   DOI
27 Guo, W., Zhang, Z., Lin, H. and Cai, L. (2020), "Z-scheme BiFeO3-CNTs-PPy as a highly effective and stable photocatalyst for selective oxidation of benzyl alcohol under visible-light irradiation", Mol. Catal., 492, 111011. https://doi.org/10.1016/j.mcat.2020.111011   DOI
28 Harish, K.N., Bhojya Naik, H.S., Prashanth Kumar, P.N. and Viswanath, R. (2012), "Synthesis, enhanced optical and photocatalytic study of Cd-Zn ferrites under sunlight", Catal. Sci. Technol., 2, 1033-1039. https://doi.org/10.1039/c2cy00503d.   DOI
29 Hu, Y., Fei, L., Zhang, Y., Yuan, J. Wang, Y. and Gu, H. (2011), "Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature", J. Nanomater., 2011, https://doi.org/10.1155/2011/797639.   DOI
30 Huang, H.B., Wang, Y., Jiao, W.B., Cai, F.Y. Shen, M., Zhou, S.G., Cao, H.L., Lu J. and R. Cao, (2018), "Lotus-leaf-derived activated-carbon-supported nano-CdS as energy-efficient photocatalysts under visible irradiation", ACS Sustain. Chem. Eng., 6(6), 7871-7879. https://doi.org/10.1021/acssuschemeng.8b01021.   DOI
31 Kapoor, S., Sheoran, A., Riyaz, M. Agarwal, J., Goel, N. and Singhal, S. (2020), "Enhanced catalytic performance of Cu/Cu2O nanoparticles via introduction of graphene as support for reduction of nitrophenols and ring opening of epoxides with amines established by experimental and theoretical investigations", J. Catal., 381, 329-346. https://doi.org/10.1016/j.jcat.2019.11.012.   DOI
32 Irfan, S., Zhuanghao, Z. Li, F., Chen, Y.X., Liang, G.X. Luo, J.T. and Ping, F. (2019), "Critical review: Bismuth ferrite as an emerging visible light active nanostructured photocatalyst", J. Mater. Res., 8(6), 6375-6389. https://doi.org/10.1016/j.jmrt.2019.10.004.   DOI
33 Jackson, S.T. and Nuzzo, R.G. (1995), "Determining hybridization differences for amorphous carbon from the XPS C 1s envelope", Appl. Surf. Sci., 90(2), 195-203. https://doi.org/10.1016/0169-4332(95)00079-8.   DOI
34 Kang, S.T., Seo, J.Y. and. Park, S.H (2015), "The characteristics of CNT/cement composites with acid-treated MWCNTs", Adv. Mater. Sci. Eng., 2015. http://doi.org/10.1155/2015/308725.   DOI
35 Kaur, J., Gupta, K., Kumar, V., Bansal, S. and Singhal, S. (2016), "Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater", Ceram. Int., 42(2), 2378-2385. https://doi.org/10.1016/j.ceramint.2015.10.035.   DOI
36 Kaur, P., Singh, S., Kumar, V., Tikoo, K.B., Chudasama, B., Kaushik, A. and Singhal, S. (2019), "Interesting makeover of strontium hexaferrites for environment remediation from excellent photocatalysts to outstanding adsorbents via inclusion of Mn3+ into the lattice", J. Alloys Compd., 791, 508-521. https://doi.org/10.1016/j.jallcom.2019.03.312.   DOI
37 Li, Z., Shen, Y., Guan, Y., Hu, Y., Lin, Y. and Nan, C.W. (2014), "Bandgap engineering and enhanced interface coupling of graphene-BiFeO3 nanocomposites as efficient photocatalysts under visible light", J. Mater. Chem. A., 2(6), 1967-1973. https://doi.org/10.1039/c3ta14269h.   DOI
38 Komal, Gupta, K., Kumar, V., Tikoo, K.B., Kaushik, A. and Singhal, S. (2020), "Encrustation of cadmium sulfide nanoparticles into the matrix of biomass derived silanized cellulose nanofibers for adsorptive detoxification of pesticide and textile waste", Chem. Eng. J., 385, 123700. https://doi.org/10.1016/j.cej.2019.123700.   DOI
39 Lam, S.M., Sin, J.C. and Mohamed, A.R. (2016), "A review on photocatalytic application of g-C3,/sub>N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater", Mater. Sci. Semicond. Proc., 47, 62-84. https://doi.org/10.1016/j.mssp.2016.02.019.   DOI
40 Li, T., Shen, J., Li, N. and Ye, M. (2013), "Hydrothermal preparation, characterization and enhanced properties of reduced graphene-BiFeO3 nanocomposite", Mater. Lett., 91, 42-44. https://doi.org/10.1016/j.matlet.2012.09.045.   DOI
41 Massad, Y., Hanbali, G., Jodeh, S., Hamed, O., Bzour, M., Dagdag, O. and Samhan, S., (2022), "The efficiency of removal of organophosphorus malathion pesticide using functionalized multi-walled carbon nanotube: Impact of Dissolved Organic Matter (DOM)", Sep. Sci. Technol., 57(1), 1-12. https://doi.org/10.1080/01496395.2021.1881118.   DOI
42 Mukherjee, A., Chakrabarty, S., Kumari, N., Su, W.N. and Basu, S. (2018), "Visible-light-mediated electrocatalytic activity in reduced graphene oxide-supported bismuth ferrite" Acs Omega, 3(6), 946-5957. https://doi.org/10.1021/acsomega.8b00708.   DOI
43 Norizan, M.N., Moklis, M.H., Demon, S.Z.N., Halim, N.A., Samsuri, A., Mohamad, I.S., Knight, V.F. and Abdullah, N. (2020), "Carbon nanotubes: functionalisation and their application in chemical sensors", RSC Adv., 10(71), 43704-43732. https://doi.org/10.1039/D0RA09438B.   DOI
44 Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., Arras, M., Fonseca, A., Nagy, J.B. and Lison, D. (2005), "Respiratory toxicity of multi-wall carbon nanotubes", Toxicol. Appl. Pharmacol., 207(14), 221-231. https://doi.org/10.1016/j.taap.2005.01.008.   DOI
45 Niaei, A.H. and Rostamizadeh M. (2020), "Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater", Adv. Nano. Res., 9(3), 173-181. http://doi.org/10.12989/anr.2020.9.3.173.   DOI
46 Noorimotlagh, Z., Kazeminezhad, I., Jaafarzadeh, N., Ahmadi, M., Ramezani, Z. and Martinez, S. (2018), "The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism", J. Hazard. Mater., 350, 108-120. https://doi.org/10.1016/j.jhazmat.2018.02.022.   DOI
47 Ortiz-Quinonez, J.L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaria, H., Betancourt, I. Santiago-Jacinto, P. and Nava-Etzana, N. (2013), "Easy synthesis of high-purity BiFeO3 nanoparticles: New insights derived from the structural, optical, and magnetic characterization", Inorg. Chem., 52(18), 10306-10317. https://doi.org/10.1021/ic400627c.   DOI
48 Padmavathy, K.S., Madhu, G. and Haseena P.V. (2016), "A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles", Procedia Technol., 24, 585-594. https://doi.org/10.1016/j.protcy.2016.05.127.   DOI
49 Prakash, V., Sharma, S., Kaur, J. and Mehta, S.K. (2018), "Graphene oxide/lysine composite-a potent electron mediator for detection of diazepam", Anal. Methods., 10(41), 5038-5046. https://doi.org/10.1039/c8ay01429a.   DOI
50 Pradeep, A. and Chandrasekaran, G. (2006), "FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4", Mater. Lett., 60(3), 371-374. https://doi.org/10.1016/j.matlet.2005.08.053.   DOI
51 Randles, J.E. (1948), "A cathode ray polarograph. Part II: The current-voltage curves", Trans. Faraday Soc., 44, 327-338.   DOI