• Title/Summary/Keyword: Echo Sensor

Search Result 47, Processing Time 0.039 seconds

Multi-beam Echo Sounder Operations for ROV Hemire - Exploration of Mariana Hydrothermal Vent Site and Post-Processing (심해무인잠수정 해미래를 이용한 다중빔 음향측심기의 운용 - 마리아나 열수해역 탐사 결과 및 후처리 -)

  • Park, Jin-Yeong;Shim, Hyungwon;Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Yoo, Seong-Yeol;Jeong, Woo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • This paper presents the operations of a multi-beam echo sounder (MBES) installed on the deep-sea remotely operated vehicle (ROV) Hemire. Hemire explored hydrothermal vents in the Forecast volcano located near the Mariana Trench in March of in 2006. During these explorations, we acquired profiling points on the routes of the vehicle using the MBES. Information on the position, depth, and attitude of the ROV are essential to obtain higher accuracy for the profiling quality. However, the MBES installed on Hemire does not have its own position and depth sensors. Although it has attitude sensors for roll, pitch, and heading, the specifications of these sensors were not clear. Therefore, we had to merge the high-performance sensor data for the motion and position obtained from Hemire into the profiling data of the MBES. Then, we could properly convert the profiling points with respect to the Earth-fixed coordinates. This paper describes the integration of the MBES with Hemire, as well as the coordinate conversion between them. Bathymetric maps near the summit of the Forecast volcano were successfully collected through these processes. A comparison between the bathymetric maps from the MBES and those from the Onnuri Research Vessel, the mother ship of the ROV Hemire for these explorations, is also presented.

Study on Hand Gestures Recognition Algorithm of Millimeter Wave (밀리미터파의 손동작 인식 알고리즘에 관한 연구)

  • Nam, Myung Woo;Hong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.685-691
    • /
    • 2020
  • In this study, an algorithm that recognizes numbers from 0 to 9 was developed using the data obtained after tracking hand movements using the echo signal of a millimeter-wave radar sensor at 77 GHz. The echo signals obtained from the radar sensor by detecting the motion of a hand gesture revealed a cluster of irregular dots due to the difference in scattering cross-sectional area. A valid center point was obtained from them by applying a K-Means algorithm using 3D coordinate values. In addition, the obtained center points were connected to produce a numeric image. The recognition rate was compared by inputting the obtained image and an image similar to human handwriting by applying the smoothing technique to a CNN (Convolutional Neural Network) model trained with MNIST (Modified National Institute of Standards and Technology database). The experiment was conducted in two ways. First, in the recognition experiments using images with and without smoothing, average recognition rates of 77.0% and 81.0% were obtained, respectively. In the experiment of the CNN model with augmentation of learning data, a recognition rate of 97.5% and 99.0% on average was obtained in the recognition experiment using the image with and without smoothing technique, respectively. This study can be applied to various non-contact recognition technologies using radar sensors.

A Development of Ultrasonic Based Distance Meter Through Detachment of Receiving and Transmitting Capacitive Ultrasonic Transducer (송.수신 분리형 초음파 거리 측정기 개발)

  • Kim Jung-Hoon;Chong Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.41-50
    • /
    • 2006
  • This paper presents a novel ultrasonic sensor system to overcome limited distance detection range that can be measured only more than 30cm by single ultrasonic transducer. This is accomplished by separation of receiving capacitive ultrasonic transducer from transmitting capacitive ultrasonic transducer. And hardwares and software of the system are described in detail. The system makes very close range as well as long range detect by wireless precisely. Frequency of trigger pulse is 10Hz, but it is very low frequency for transmitting data in wireless module. Therefore, for triggering between receiver and transmitter, an algorithm for mixing and distinguishing trigger pulse from carrier pulse by software is proposed. The system is designed by common microprocessor 8051. The performance of the proposed method has been assessed through two types. The first, transmitting and receiving transducer are put on both sides. And then, distance of two point is measured as far as 0mm. Secondly, transmitting transducer send out ultrasonic pulse and measure the time of flight(TOF) until a first echo from an object detected by the detached receiving transducer. The distance between the detached transducers and a reflecting object is measured as far as 7cm. Images of measured ultrasonic waves and TOF for two methods presented to prove effectiveness of results.

3D Stereo Display of Spatial Data from Various Sensors (다양한 센서로부터 획득한 공간데이터의 3D 입체 디스플레이)

  • Park, So-Young;Yun, Seong-Goo;Lee, Young-Wook;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.669-676
    • /
    • 2010
  • Visualization requires for effective analysis of the spatial data collected by various sensors. The best way to convey 3D digital spatial information which is modeling of the real world to the users, realistic 3D visualization and display technology. Since most of the display is based on 2D or 2.5D projection to the plane, there is limitation in representing real world in 3D space. In this paper, data from airborne LiDAR for topographic mapping, Flashi-LiDAR as emerging sensor with great potential to 3D data acquisition, and multibeam echo-sounder for underwater measurement, were stereoscopically visualized. 3D monitors are getting popular and could be information media and platform in geoinformatics. Therefore, study on creating 3D stereoscopic contents of spatial information is essential for new technology of stereo viewing systems.

Terrain Referenced Navigation for Autonomous Underwater Vehicles (자율무인잠수정의 지형참조항법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kwon, Jayhyun;Yu, Myeongjong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.702-708
    • /
    • 2013
  • Underwater TRN (Underwater Terrain Referenced Navigation) estimates an underwater vehicle state by measuring a distance between the vehicle and undersea terrain, and comparing it with the known terrain database. TRN belongs to absolute navigation methods, which are used to compensate a drift error of dead reckoning measurements such as IMU (Inertial Measurement Unit) or DVL (Doppler Velocity Log). However, underwater TRN is different to other absolute methods such as USBL (Ultra-Short Baseline) and LBL (Long Baseline), because TRN is independent of the external environment. As a magnetic-field-based navigation, TRN is a kind of geophysical navigation. This paper develops an EKF (Extended Kalman Filter) formulation for underwater TRN. A filter propagation part is composed by an inertial navigation system, and a filter update is executed with echo-sounder measurement. For large-initial-error cases, an adaptive EKF approach is also presented, to keep the filter be stable. At the end, simulation studies are given to verify the performance of the proposed TRN filter. With simplified sensor and terrain database models, the simulation results show that the underwater TRN could support conventional underwater navigation methods.

Development of Ultrasound Sector B-Scanner(I)-Front End Hardware Part- (초음파 섹터 B-스캐너의 개발(I)-프론트 엔드 부분-)

  • 권성재;박종철
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1986
  • A prototype ultrasound sector B-scanner has been developed where the front-end hardware refers to all the necessary circuits for transmitting the ultrasound pulses into the human body and receiving the reflected echo signals from it. The front-end hardware can generally be divided into three parts, i.e., a pulse generator for insonification, a receiver which is responsible for processing of low-level analog signals, and a steering controller for driving the mechanical sector probe whose functions and design concepts are described in this paper. The front-end hardware is implemented which incorporates the following features: improvement of the axial resolution using a circuit which reduces the ring-down time, flexibility of generating time-gain compensation curve, and adoption of a one-chip microcomputer for generating the rate pulses based on the sensor output waveforms.

  • PDF

Evaluation of Depth Measurement Method Based on Spectral Characteristics Using Hyperspectrometer (초분광 스펙트로미터를 활용한 분광특성 기반의 수심 측정 기법 적용성 검토)

  • You, Hojun;Kim, Dongsu;Shin, Hyoungsub
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.103-119
    • /
    • 2020
  • Recently, the rapid redeposition and erosion of rivers artificially created by climate change and the Four Rivers Restoration Project is questionable. According to the revised law in Korea, the river management agency will periodically carry out bed changes surveys. However, there are technical limitations in contrast to the trend of increasing spatial coverage, density and narrowing of intervals. National organizations are interest in developing innovative bed changessurvey techniquesfor efficiency. Core of bathymetry survey is to measure the depth of rivers under a variety of river conditions, but that is relatively more risky, time-consuming and expensive compared to conventional ground surveys. To overcome the limitations of traditional technology, echo sounder, which has been mainly used for ocean depth surveying, has been applied to rivers. However, due to various technical limitations, it is still difficult to periodically investigate a wide range of areas. Therefore, technique using the remote sensing has been spotlighted as an alternative, especially showing the possibility of depth measurement using spectral characteristics. In this study, we develop and examine a technique that can measure depth of water using reflectance from spectral characteristics. As a result of applying the technique proposed in thisstudy, it was confirmed that the measured depth and the correlation and error corresponding to 0.986 and 0.053 m were measured in the depth range within 0.95 m. In the future, this study could be applied to the measurement of spatial depth if it is applied to the hyperspectral sensor mounted on the drone.

A Study of NMEA Protocol Multiplexer Simulation on the based optimizing Queue (최적화된 큐 기반의 NMEA 프로토콜 멀티플렉서 시뮬레이션에 관한 연구)

  • Park Si-Hyoung;Jung Sung-Hun;Kim Chang-Soo;Yim Chang-Mook;Yim Jae-Hong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.15-19
    • /
    • 2004
  • Domestic use, or embody program that transmit NMEA protocol using multi port as software and is using because there is no fee and product that develop NMEA protocol Multiplexer, import mounting for foreign climax present. These method is paid or there is problem that must make out special processing part in each application program. Also, each mountings that display NMEA protocol can cause double resources waste and damage etc. because manufacturing firm and platform are different. Can act separatively as single hardware module of reliable processing method and high efficiency to supplement this in this treatise, and because using design of optimized cue, heighten memory efficiency of module, and proposed NMEA protocol Multiplexer that can keep high trustability of Come on, deviation compass, echo sound, mountings of GPS and so on and real time communication that is main input sensor equipment about embodiment.

  • PDF

Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement (수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안)

  • Jung, Jin Woo;Cho, Kwang Hee;Kim, Min Ji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.

Application of Very Short-Term Rainfall Forecasting to Urban Water Simulation using TREC Method (TREC기법을 이용한 초단기 레이더 강우예측의 도시유출 모의 적용)

  • Kim, Jong Pil;Yoon, Sun Kwon;Kim, Gwangseob;Moon, Young Il
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.409-423
    • /
    • 2015
  • In this study the very short-term rainfall forecasting and storm water forecasting using the weather radar data were implemented in an urban stream basin. As forecasting time increasing, the very short-term rainfall forecasting results show that the correlation coefficient was decreased and the root mean square error was increased and then the forecasting model accuracy was decreased. However, as a result of the correlation coefficient up to 60-minute forecasting time is maintained 0.5 or higher was obtained. As a result of storm water forecasting in an urban area, the reduction in peak flow and outflow volume with increasing forecasting time occurs, the peak time was analyzed that relatively matched. In the application of storm water forecasting by radar rainfall forecast, the errors has occurred that we determined some of the external factors. In the future, we believed to be necessary to perform that the continuous algorithm improvement such as simulation of rapid generation and disappearance phenomenon by precipitation echo, the improvement of extreme rainfall forecasting in urban areas, and the rainfall-runoff model parameter optimizations. The results of this study, not only urban stream basin, but also we obtained the observed data, and expand the real-time flood alarm system over the ungaged basins. In addition, it is possible to take advantage of development of as multi-sensor based very short-term rainfall forecasting technology.