This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.
Structures designed for wind have an opposite design approach to those designed for earthquakes. These structures are usually reliable if they are constructed in an area where there is almost no or less severe earthquake. However, as seismic activity is unpredictable and it can occur anytime and anywhere, the seismic safety of structures designed for wind must be assessed. Moreover, the design approaches of wind and earthquake systems are opposite where wind design considers higher stiffness but earthquake designs demand a more flexible structure. For this reason, a novel Machine learning framework is proposed that is used to assess and classify the seismic safety of the structures designed for wind load. Moreover, suitable criteria is defined for the design of wind resistance structures considering seismic behavior. Furthermore, the structural behavior as a result of dynamic interaction between superstructure and substructure during seismic events is also studied. The proposed framework achieved an accuracy of more than 90% for classification and prediction as well, when applied to new structures and unknown ground motions.
An Earthquake Early Warning (EEW) system is a technology that alerts people to an incoming earthquake by using P waves that are detected before the arrival of more severe seismic waves. P-wave analysis is therefore an important factor in the production of rapid seismic information as it can be used to quickly estimate the earthquake magnitude and epicenter through the amplitude and predominant period of the observed P-wave. However, when a large-magnitude teleseismic earthquake is observed in a local seismic network, the significantly attenuated P wave phases may be mischaracterized as belonging to a small-magnitude local earthquake in the initial analysis stage. Such a misanalysis may be sent to the public as a false alert, reducing the credibility of the EEW system and potentially causing economic losses for infrastructure and industrial facilities. Therefore, it is necessary to develop methods that reduce misanalysis. In this study, the possibility of seismic misclassifying teleseimic earthquakes as local events was reviewed using the Filter Bank method, which uses the attenuation characteristics of P waves to classify local and outside Korean peninsula (regional and teleseismic) events with filtered waveform depending on frequency and epicenter distance. The data used in our analysis were analyzed for maximum Pv values using 463 events with local magnitudes (2 < ML ≦ 3), 44 (3 < ML ≦ 4), 4 (4 < ML ≦ 5), 3 (ML > 5), and 89 outside Korean peninsula earthquakes recorded by the KMA seismic network. The results show that local and telesesimic earthquakes can be classified more accurately when combination of filtering bands of No. 3 (6-12 Hz) and No. 6 (0.75-1.5 Hz) is applied.
The Transactions of the Korea Information Processing Society
/
v.13
no.5
/
pp.217-220
/
2024
Predicting earthquake occurrences accurately is challenging, and preparing all buildings with seismic design for such random events is a difficult task. Analyzing building features to predict potential damage and reinforcing vulnerabilities based on this analysis can minimize damages even in buildings without seismic design. Therefore, research analyzing the efficiency of building damage prediction models is essential. In this paper, we compare the accuracy of earthquake damage prediction models using machine learning classification algorithms, including Random Forest, Extreme Gradient Boosting, LightGBM, and CatBoost, utilizing data from buildings damaged during the 2015 Nepal earthquake.
This research evaluates the soil conditions for seismic stations situated in Romania using the horizontal-to-vertical spectral ratio (HVSR). The strong ground motion database assembled for this study consists of 179 analogue and digital strong ground motion recordings from four intermediate-depth Vrancea seismic events with $M_w{\geq}6.0$. In the first step of the analysis, the influence of the earthquake magnitude and source-to-site distance on the H/V curves is evaluated. Significant influences from both the earthquake magnitude and hypocentral distance are found especially for soil class A sites. Next, a site classification method proposed in the literature is applied for each seismic station and the soil classes are compared with those obtained from borehole data and from the topographic slope method. In addition, the success and error rates of this method are computed and compared with other studies from the literature. A more in-depth analysis of the H/V results is performed using data from seismic stations in Bucharest and a comparison of the free-field and borehole H/V curves is done for three seismic stations. The results show large differences between the free-field and the borehole curves. As a conclusion, the results from this study represent an intermediary step in the evaluation of the soil conditions for seismic stations in Romania and the need to perform more detailed soil classification analysis is highly emphasized.
Journal of the Korean Association of Geographic Information Studies
/
v.17
no.4
/
pp.10-27
/
2014
HAZUS-MH is a GIS-based computer program that estimates potential losses from multi-hazard phenomena: earthquakes, floods and hurricanes. With respect to seismic disaster, characteristics of a hypothetical or actual earthquake are entered into HAZUS. Then HAZUS estimates the intensity of ground shaking and calculates the correspondent losses. In this study, HAZUS was used as a part of the preparations of the future seismic events at a coastal plant facility area. To reliably characterize the target facility area, many geotechnical characteristics data were synthesized from the existing site investigation reports. And the buildings and facilities were sorted by analyzing their material and structural characteristics. In particular, the study area was divided into 17 blocks taking into account the situation of both land development and facility distribution. The ground conditions of blocks were categorized according to the site classification scheme for earthquake-resistant design. Moreover, seismic fragility curves of a main facilities were derived based on the numerical modeling and were incorporated into the database in HAZUS. The results estimated in the study area using HAZUS showed various seismic damage and loss potentials depending on site conditions and structural categories. This case study verified the usefulness of the HAZUS for estimating earthquake losses in coastal facility areas.
This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks, but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.
Following the companion paper (I. Comparisons with Well-known Seismic Code and Site Response Characteristics), several acceleration data recorded during recent earthquake events in Korea were analyzed to verify the suitability of the proposed two-parameters site classification system and the corresponding site coefficients. For all of rock-soil site pairs less than 30 km distant, response spectrums and corresponding site coefficients, $F_a$ and $F_v$, were determined. Unfortunately, some of data have an eccentric error, where the spectral acceleration of rock site is more amplified than that of soil site. The $F_a$ and $F_v$ for all of pairs except the pairs of error were compared with those in the current code and the proposed system. The $F_a$ and $F_v$ from the recorded motions show definitely different trend from that of the current code. In addition, the site coefficients from recorded motions at four 765 kV substation sites, which are several hundred meters distant, have a remarkably similar trend and absolute values to those in proposed two-parameters site classification system. Based on earthquake motions recorded in domestic areas including data from the four 765 kV substation sites, the two-parameters site classification and site coefficients are superior to the results obtained from the current Korean seismic code.
On 15th November 2017, the coastal city of Pohang, located in the Southeastern part of South Korea was shaken by a magnitude 5.4 earthquake. The earthquake displaced more than 1,700 residents and caused more than $ 300 million dollars of economic loss. It was the second most damaging earthquake in the history of Korea. Soon after the earthquake, a group of scientists raised a possible link between the first Enhanced Geothermal System (EGS) project and the earthquake. At the same time, another group of scientists put forward a different hypothesis of the causation of the earthquake claiming that it was caused by the geological movements that were initiated by the Great Tohoku Earthquake in 2011. Since then, there were scientific debates between the two different groups of scientists. The scientific debate on the causation of the earthquake has been concluded temporarily by the Research Investigatory Committee on the Pohang Earthquake in 2019. The research committee concluded that the earthquake was caused by the Pohang EGS system: this means that the earthquake can be defined not as a natural earthquake, but as an artificially triggered earthquake. This article is to examine the Pohang earthquake can be defined as an Anthropocenic event. The newly suggested concept, the Anthropocene is a relatively novel term to classify the earthly strata and their relationship to geological time. The current geological period should be defined by human activities and man-made earthly environment. Although the term is basically related to geological classification, the Anthropocene has been widely debated amongst humanist and social science scholars. The current disastrous situation of our planet also implies with the Anthropocene. This paper is to discuss how to understand anthropogenic events. In particular, the paper pays attention to two different scholarly positions on the Anthropocene: Isabelle Stenger's Gaia theory and Barbara Herrnstein Smith's relativist theory. The former focuses on the earthly inevitable catastrophe of Anthropocene while the latter suggests to situate and contextualise anthropogenic events. On the basis of the theoretical positions, the article is to analyse how the Pohang earthquake can be located and situated.
Journal of The Korean Society of Agricultural Engineers
/
v.61
no.3
/
pp.101-112
/
2019
This study developed selection criteria of small-scales reservoirs, having under $300,000m^3$ storage capacity, for the Emergency Action Plan(EAP) establishment in order to reduce the disaster risks of the reservoir's failures. Those reservoirs are out of ranges of Korean EAP establishment standard, but have potential risk of disasters as they have often failed by the recent extreme rainfall events and earthquakes, causing economical and life losses. The problem of reservoir aging is also one of the reasons of them. In this study, the developed selection criteria of small reservoirs for EAP establishment are storage capacity, embankment height, reservoir age, heavy rain factor and earthquake factor. These criteria were selected based on the review of the existing EAP establishment guidelines, analysis of the past dam failure cases, and the previous related studies. The quantification of these criteria were conducted for the practical applications in the fields, and applied to 67 previous failures in order to investigate the relation of each criteria with these failures. The earthquake factor found to be the highest relations followed by heavy rain factors, combination of earthquake and heavy rain factors, and reservoir age. The classification was made as observation and review groups for EAP establishments based on overlapping numbers of each criteria. This classifications applied to 354 reservoirs designated as having the potential disaster risk by MOIS, and showed 38.4% of observation and 11.9% of review groups. Anticipatory monitoring and regular inspection should be made by professional facility managers for the observation group, and necessity of EAP establishment should be assessed for the review group based on the downstream status and financial budget.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.