• Title/Summary/Keyword: Earth retaining wall

Search Result 371, Processing Time 0.029 seconds

Influence of Near Field Blasting Vibration to Earth Retaining Wall (근거리 발파진동이 흙막이 구조물에 미치는 영향)

  • Whang, Hyun-Ju;Lee, Sang-Pil;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Allowable level of blasting vibration for earth retaining wall was examined in this study. Blasting vibration was measured at near field blasting to evaluate the influence of the blasting work to earth retaining wall and rear ground. Although small scale blasting with $0.5{\sim}2.0kg$ explosives per round merely influenced to the structure and ground, but it was suggested to blast at the distance of twice the least burden considering the block movement.

Experimental study on the behavior of retaining wall according to underground excavation distance (지하굴착 이격거리에 따른 흙막이벽체 거동에 대한 실험적 연구)

  • Park, Jong-Deok;Ahn, Chang-Kyun;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • The changes in earth pressure and ground settlement due to the underground excavation nearby the existing retaining wall according to the separation distance between underground excavation and retaining wall, were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the underground excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure was measured according to the excavation stages by using 10 separated right walls simulating the retaining wall. The results showed that the earth pressure was changed by the lowering of first bottom wall(B1), however the earth pressure was not changed significantly by the lowering of third bottom wall(B3) since B3 had sufficient separation distance from retaining wall. Lowering of first bottom wall(B1) induced the decrease of earth pressure in lower part of retaining wall, on the contrary, lowering of first bottom wall(B1) induced the increase of earth pressure in middle part of retaining wall proving the arching effect.

A Study on Cause Analysis and Countermeasures of Chloride Attack of Reinforced Earth Retaining Walls Installed on Bridge Abutment (염해로 인한 교대부 보강토옹벽 손상 원인 분석 연구)

  • Do, Jong-Nam;Kim, Nag-Young;Cho, Nam-Hun;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.59-64
    • /
    • 2018
  • The damages to the reinforced earth retaining wall are divided into the front wall, foundation, drainage and upper slope. Damage of reinforced earth retaining wall is mainly caused by damage caused by drainage problem in the field. Recently, damage caused by snow removal materials have been occurred. Recently, the amount of snow removal materials used in winter is increasing due to abnormal weather. This chlorides degrades the concrete structure, where the reinforced earth retaining wall was no exception. There has recently been a case in which the front wall of the reinforced earth retaining wall deteriorates due to the chlorides introduced into the back filling portion through the drainage passage. Therefore, in this study, the cause of damages of reinforced earth retaining wall constructed in bridge abutment was analyzed, and an analytical study was conducted on the countermeasure. As a result, it was found that chlorides, which was introduced through the drainage system in the expansion joint of the bridge shift part or the upper structure, is infiltrated into the back part of the reinforced earth retaining wall and damaged. Therefore, it is suggested to improve the drainage system and restored the stiffness of the front wall.

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

New Patent Technology for Retaining Wall and Bridge Abutment (옹벽 및 교대 신기술 특허)

  • Kim, Kyeong-Ho;Choi, Jung-Ho;An, Jung-Seng;Kim, Nak-Gyeom
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.895-898
    • /
    • 2008
  • This research paper intends to investigate and review the new technology of patent registration trend for the most recent domestic retaining wall and bridge abutment, and to apply the technology appropriately to the actual retaining wall and bridge abutment construction. Investigated new technological patents for retaining wall include pre-fabricated PC retaining wall construction method that reduces section force with prestressed PS steel bars, pre-fabricated Coupler-Tension retaining wall, clay reinforced retaining wall block for road, earth reinforced retaining wall block that induces uniform settlement, and etc. Investigated new technologies for abutment are abutment construction method that uses sheet pile, monolithic bridge with complex abutments, construction method for abutment bridge, earth reinforced abutment structure and etc.

  • PDF

A Study on Performance Improvement of a PHC-W Pile for PHC-W Retaining Wall (PHC-W 흙막이용 PHC-W말뚝의 성능개선에 관한 연구)

  • Kim, Chae Min;Kim, Sung Su;Jeon, Byeong Han;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • Various earth retaining wall methods were used on the domestic construction sites and a cast in place pile (C.I.P) method was mostly applied at deep excavation. Because of a lot of shortcomings in the C.I.P method, a new method using PHC-W earth retaining wall was developed. The earth retaining wall method using PHC-W piles has a lot of advantages including that it is safer than other earth retaining wall methods due to uniform quality and high rigidity. PHC-W was designed to effectively resist lateral earth pressure by alternating cross section of PHC pile. And increment of bending moment and shear strength were verified through KS F 4306 tests, and were increased by 42% and 98% more than KS standards.

Behavior of Reinforced Earth Retaining Wall by Shaking Table Test (진동대 모형실험을 통한 보강토 옹벽의 거동 특성)

  • Yoon, Won-Sub;Yoon, Bu-Yeol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.637-647
    • /
    • 2019
  • In this study, we analyzed seismic behavior of reinforced earth retaining wall through the model test in order to characterize the behavior of reinforced earth retaining wall during earthquake. A scale model test was performed based on similitude ratio in accordance with law of similitude due to time and financial constraints on real scale modeling experiments. Seismic resistance characteristics of each seismic waves were analyzed by assessing the variations measured through excitation of the excited acceleration of 0.05g, 0.1g, 0.15g, and 0.2g. The results of this study, it would be important to obtain reasonable and abundant data on ground properties and seismic design in preparation for earthquakes when assessing the safety of block type reinforced earth retaining wall confined to model experiment. Acquisition of those data and systematic analytical techniques are considered likely to have a significant effect on the decrease of structure damage caused by earthquakes in Korea which has recently witnessed frequent occurrence of earthquakes.

The Behavior of Earth Retaining Walls Applied to Top-Down Construction Method Using Back Analysis (Top-Down 공법이 적용된 흙막이벽의 역해석을 이용한 거동분석)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The behaviors of a diaphragm wall and a contiguous pile wall such as CIP(Case-in-place pile) and SCW(Soil-cement wall), applied to the top-down construction method, were analyzed using the SUNEX program, which is widely used to design earth retaining walls. Four types of earth pressures, as described by Rankine (1857), Terzaghi and Peck (1967), Tchbotarioff (1973), and Hong and Yun (1995a), were applied to the analysis program to predict the lateral displacement of walls. The results show that the displacements of an earth retaining walls vary with the applied earth pressure. The predicted lateral displacement based on Hong & Yun's (1995a) earth pressure is similar to the measured displacement. Therefore, the actual lateral displacement of an earth retaining wall, as applied to top-down construction method, can be accurately predicted by using an analysis program considering Hong and Yun's (1995a) earth pressure.

Model Test of Reinforced Earth Retaining Walls (보강토옹벽에 대한 모형실험)

  • 진병익;유연길
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • An experimental study was carried out in the laboratory on a model of a reinforced earth retaining wall to provide the empirical data for the rational design and the construction methods on a reinforced earth retaining wall. Observed measurements included the variation of tension in the aluminium foil reinforcing strips was monitored by electrical resistance strain gauges pasted on its at different stages of construction. In addition, the lateral movement of the wall was measured by dial gauges and the mode of collapse of the wall was investigated. The measured values are discussed in comparison with the results of the existing studies of the reinforced earth retaining wall. A significant result of the experiments is that the variation of tension in reinforcing strips is non-linear with the maximum tension occuring close to wall face. Attachment of reinforcement to wall increases the stability against overturning.

  • PDF