• Title/Summary/Keyword: Earth parameter

Search Result 316, Processing Time 0.121 seconds

Complexity of Groundwater Flow System in a Site Reflected in the Fluctuations of Groundwater Level and Temperature (지하수위와 수온 변동에 나타난 부지 규모 지하수 흐름장의 복잡성)

  • Jonghoon Park;Dongyeop Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.563-570
    • /
    • 2022
  • This study was objected to show the complexity of groundwater flow system in a site-scale area as a design parameter of the groundwater monitoring network for early detection of pollutant leakage from a potential source of groundwater contamination (e.g., storage tank). Around the tanks, three monitoring wells were installed at about 22~25 m deep and groundwater level and temperature had been monitored for 22 months by 2-minute interval, and then compared with precipitation and temperature data from nearby weather station. Annual variation of groundwater level and its response to precipitation event, variation of groundwater temperature and delayed response to that of atmospheric temperature indicate the complexity of groundwater flow and flow paths even in the relatively small area. Thus, groundwater monitoring network for early detection of contaminant leakage should be designed with full consideration of the complexity of groundwater flow system, identified from the detailed hydrogeological investigation of the site.

Spectroscopic Observation of AG Peg and Efficiency Changes of Bowen Fluorescence Mechanism (AG Peg의 분광 관측과 Bowen 형광 기작의 효율 변화)

  • Hyung, Siek;Lee, Seong-Jae;Lee, Kang Hwan
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.405-420
    • /
    • 2017
  • We investigated the H I, He II and O III emission lines of the symbiotic star AG Peg, using the spectroscopic data secured at different phases in three periods at the Lick Observatory. We measured FWHM and the intensity of six O III Bowen lines and studied the efficiency of fluorescence mechanism. The mean FWHM of O III normal and Bowen lines observed during three time periods did not make much difference, while Bowen line intensities are about 4.0 times higher than the normal lines. Comparing the predicted and the observed ratios, we found that the observed intensities are higher than predicted intensities, except for O III ${\lambda}$ 3759.87. The O III ${\lambda}$ 3791.26 and 3754.67 intensity ratios observed only in 2001 are in good agreement with the predictions by Saraph and Seaton (1980). We obtained the Bowen efficiency parameter (R)=0.47 for 2002, but we could not find R for the other two periods of time. Because of this, based on the 2002 efficiency result, we calculated the intensity ratio of O III normal and Bowen lines relative to He II ${\lambda}$ 4685.68 and derive the efficiency variation with time period. The result showed that the efficiency is the highest in 1998 and the lowest in 2001. We conclude that the efficiencies with phase are caused by the electron temperature changes in the ionized gas. The efficiencies of AG Peg are likely to increase along with electron temperature. Our analysis results may be useful in understanding the physical conditions of the ionized shell in symbiotic star and the intensity ratio and efficiency variation.

Comparison of Texture Images and Application of Template Matching for Geo-spatial Feature Analysis Based on Remote Sensing Data (원격탐사 자료 기반 지형공간 특성분석을 위한 텍스처 영상 비교와 템플레이트 정합의 적용)

  • Yoo Hee Young;Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.683-690
    • /
    • 2005
  • As remote sensing imagery with high spatial resolution (e.g. pixel resolution of 1m or less) is used widely in the specific application domains, the requirements of advanced methods for this imagery are increasing. Among many applicable methods, the texture image analysis, which was characterized by the spatial distribution of the gray levels in a neighborhood, can be regarded as one useful method. In the texture image, we compared and analyzed different results according to various directions, kernel sizes, and parameter types for the GLCM algorithm. Then, we studied spatial feature characteristics within each result image. In addition, a template matching program which can search spatial patterns using template images selected from original and texture images was also embodied and applied. Probabilities were examined on the basis of the results. These results would anticipate effective applications for detecting and analyzing specific shaped geological or other complex features using high spatial resolution imagery.

Effect of Stress History on CPT-DMT Correlations in Granular Soil (응력이력이 사질토의 CPT-DMT 상관관계에 미치는 영향)

  • Lee, Moon-Joo;Choi, Sung-Kun;Kim, Min-Tae;Lee, Ju-Hyeong;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.730-739
    • /
    • 2010
  • Stress history increases in penetration resistance due to the increase in residual horizontal stress of granular soil. This study analyzes the effect of stress history on the results of CPT and DMT from calibration chamber specimen in OC as well as NC state. Test results show that the normalized cone resistance by mean effective stress correlates well with the relative density and the state parameter, whereas the normalized cone resistance with regard to vertical effective stress is a little affected by stress history. The horizontal stress index($K_D$) in DMT more reflects the influence of stress history on granular soil than the dilatometer modulus($E_D$) and cone resistance($q_c$). The $K_D/K_0$, in which the effect of stress history on $K_D$ is compensated by the at-rest coefficient of earth pressure, $K_0$, is related to relative density, state parameter and the normalized cone resistance by mean effective stress. It is also observed that the normalized dilatometer modulus by mean effective stress($E_D/{\sigma_m}'$) is unique correlated with the state parameter, regardless of stress history.

  • PDF

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique (Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석)

  • Choi, Jeonghyeon;Jang, Suhyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Identification of MgII Absorbers in the Quasar Lines of Sight

  • Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.75.3-75.3
    • /
    • 2015
  • Large area infrared surveys are often accompanied with follow-up optical spectroscopic surveys that has a significant legacy value even for other areas of research. Using these spectral database, we have performed a search for MgII absorption lines in the optical spectrum of background quasar. Over the ~4deg2 of AKARI North Ecliptic Pole survey field and Spitzer First Look Survey field, 18 and 16 MgII absorber systems are identified respectively. The redshift range for the background quasars was 1.0<$z_{qso}$<3.4, while the redshift range for the absorber was 0.6<$z_{abs}$<1.6. Galaxies responsible for MgII absorptions are identified in the deep optical images (CFHT r-band), yet the identification still remains ambiguous for 60% of the systems due to the limited image depth and the source crowdedness. The impact parameter ranges 20-60kpc, and the rest-frame equivalent width of MgII absorption ranges $0.7-4{\AA}$. The most critical part in the identification of MgII absorber galaxies is the existence of deep optical images in addition to the high S/N quasar spectrum with R>3000.

  • PDF

Analysis of Earth Design Parameter and Geothermal Heat Exchanger Length in Geothermal System (지열시스템의 지중 설계요소와 지중열교환기 길이 분석)

  • Park, Jong-II;Park, Kyung Soon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, we analyzed t he design condition for appropriate design factor at geothermal system design documents. It is intended to provide the proper information of geothermal system design condition when construct new building, designer can use design conditions more efficiently. Therefore, it is possible to plan for domestic geothermal system, through utilization at design element, to provide as a good information that can predict the approximate underground condition. Thus, provided the basic design conditions that can predict the capacity of the geothermal system. It will be the first step to solve the problem.

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

A study on new soil investigation method using seismic waves generated by dynamic penetration blows

  • Saito Hideki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.3-9
    • /
    • 2005
  • In order to obtain more reliable data for the information on the ground, a new site Investigation method is proposed, in which seismic waves (S-waves) generated by the Swedish Ram Sounding Test (SRS) are used. It is indicated that the energy transferred from the hammer to the rod in SRS's is much more stable, compared to SPT's. A series of SRS with measurements of seismic waves at the ground surface were carried out to clarify the characteristics of seismic wave propagation in the ground. As the results of comparison between seismic S-wave amplitudes and $N_d$ (blow count for 20 cm penetration in SRS), it was found that amplitudes of S-waves generated by SRS correlate well with $N_d$. The amplitude of the S-wave is thought to be more adequate parameter for the soil strength and rigidity than $N_d$.

  • PDF

STUDY ON GRAVOTHERMAL OSCILLATIONS WITH TWO-COMPONENT FOKKER-PLANCK MODELS

  • KIM SUNGSOO S.;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.143-144
    • /
    • 1996
  • Two-component models (normal star and degenerate star components) are the simplest realization of clusters with a mass spectrum because the high mass stars quickly evolve off leaving degenerate stars behind, while low mass stars survive for a long time as main-sequence stars. In the present study we examine the post-collapse evolution of globular clusters using two-component Fokker-Planck models that include three-body binary heating. We confirm that a simple parameter ${\epsilon}{\equiv} (E_{tot}/t_{rh})/(E_c/t_{rc})$ well describes the occurrence of gravothermal oscillations of two-component clusters. Also, we find that the degree of instability depends on the steepness of the mass function such that clusters with a steeper mass function are less exposed to instability.

  • PDF