• Title/Summary/Keyword: Earth and Moon

Search Result 918, Processing Time 0.025 seconds

Mission Design and Analysis based on SEM Angle by Using Variable Coast During 3.5 Earth-Moon Phasing Loop Transfer (Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석)

  • Choi, Su-Jin;Lee, Donghun;Lim, Seong-Bin;Choi, Suk-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • In order to analyze the overall characteristics of the lunar orbiter, the Variable Coast method, which can be launched everyday, is applied to the 3.5 phasing loop transfer trajectory. The mission scenario for the entire process from launching to entering the lunar orbit is set up and performed simulation by selecting the launch pad and launch vehicle. In particular, the SEM(Satellite-Earth-Moon) angle defined in Earth-Moon rotating frame is an important constraint to comprehensively evaluate the 3.5 phasing loop transfer trajectory. The simulation using SEM angle is analyzed from various viewpoints such as launch epoch, coast duration, perigee altitude and ${\Delta}V$ not only trans-lunar trajectory but lunar orbit insertions and the optimum SEM angle is suggested in this study. It is expected that this results will be helpful to evaluate the characteristics of the 3.5 phasing loop transfer trajectory according to the launch vehicle selection by comparison with Fixed Coast analysis results in the future.

Contents Analysis of Astronomy in Science Textbooks of Elementary School according to the Changes of the Curriculum (교육과정의 변천에 따른 초등학교 과학과 교과서의 천문에 관한 내용 분석)

  • Choi, Hyun-Dong;Kwon, Chi-Soon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • The purpose of this study is to provide meaningful basic materials for organizing a science curriculum in future by analyzing the status and changes of contents about astronomical phenomena in textbooks according to the changes of the science curriculum of elementary school. A main target of analysis is science textbooks of elementary school in curriculums from 1st to 7th. For the analysis, the analytic frame based on contents in astronomy textbooks of teachers colleges and colleges of education was used. The result of the analysis is as in the following. First, astronomy accounted for average about 7% of all pages of textbooks in all of science curriculums. The 1st educational curriculum had the most learning quantity of 10.40%, and the 6th curriculum had the least quantity of 4.39%. These results show that astronomy was not a small part and was considered important in each science curriculum of elementary school considering that earth science accounted for 17-26% of all pages in elementary school science curriculum. Second, the things that have been dealt with in common in all science curriculums from 1st to 7th of elementary school are the shape of the earth, the rotation and the revolution of the earth, the occurrence of the seasons, the apparent motion of the sun, the status and motion of the moon, the movement of a star, the brightness and distance of a star, constellations, the sun, planets and others. These contents are expected to be dealt with continuously as basic contents to organize astronomy regardless of the changes of curriculum. Third, in science curriculum of elementary school, astronomical phenomena based on life experiences regarding the earth, the moon and the sun are mainly dealt with in the first and the second grade. Contents requiring principles-understanding and research are dealt with in the fifth and sixth grade. These results show that elementary school science curriculum dealing with astronomy reflects the developmental stages of students and considers principle of learning possibility.

High School Students' Conceptual Change of the Lunar Phases on Instyuction Using the Lunar Phases Drawing Module (달의 위상 작도 모듈 활용 수업에 의한 고등학생들의 달의 위상 개념 변화)

  • Kim, Jong-Hee
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.353-363
    • /
    • 2006
  • This study investigates how the lunar phases drawing module-applied instruction affects high school students' conceptual changes of the lunar phases. 46 juniors in a high school were given the module instruction on drawing the lunar phases, and then interviews were conducted to verify conceptual changes in subjects' recognition structures. The types of students' misconceptions of the lunar phases change before the instruction were as follows. Type S is that the Earth's shadow covers the moon. Type SR is that one has both misconception of Type S and a scientific concept at the same time according to the positional relationships. The scientific concept means that an observer sees a moon's part which reflects sunlight. Type SB is that the Earth's shadow covers the moon or the moon can be seen or not by the background's brightness according to the positional relationships. The last Type SRB includes all three above-mentioned types, and it explains the lunar phases at each position. As a result of the module-based instruction, 26 out of 36 subjects built up the scientific concept and 10 students did not. 7 out of the 11 Type S and 3 out of the 17 Type SR students did not, either. Especially, type S students did not change their preconception that the phases of moon change were done by the earth's shadow. Here, their preconception is too much strong; as they solve problems, their preconception is more beneficial, comparing to the method which it is presented from the module. This fact supports that it is difficult for students to discard preconception.

A Study on the Earth Tide Variations by ET Gravimeter (ET 중력계에 의한 기조력 변화 연구)

  • Park, Jung Hwan;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.141-147
    • /
    • 1998
  • Earth tide observations were taken at AMIST observatory in Seoul by LaCoste-Romberg ET gravimeter from September 2 to 16, 1997 for determining the gravimetric factor ($\delta$) and analyzing the tidal components. Meter drifts were corrected by regression and then denoised by threshholding wavelet, a data processing tool. The mean value of $\delta$ is 1.2 and the mean phase lag of & ($M_2$, $S_2$) and & $K_1$, $O_1$) is $0.07{\pm}0.03^{\circ}$ and $0.08{\pm}0.07^{\circ}$ by analyzing the observed earth tides. For yielding measurements of gravity accurate to about 0.01 mgal, the Earth tide observations are required by ET meter. The tidal variations are due to the planet's distance and zenith angle. With the exception of Earth-Moon and Earth-Sun mechanism, the possible causes of tidal variations are tectonical, meterological and hydrological perturbations. The long period and broad observations are required for determining the state of art gravimetric factor in Korea.

  • PDF

Complementary Models for Helping Secondary School Students to Develop Their Understanding of Moon Phases (중.고등학생이 이해하는 달의 위상 변화 모델 분석을 통한 보완 모델 제안)

  • Lee, Mi-Ae;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.60-77
    • /
    • 2008
  • We investigated the textbook model explaining a phase of the Moon and compared it with student models at the secondary levels in Korea. 20 high school students and 36 middle school students from suburb area participated in this study. Participants were interviewed to explain understandings about the cause of the Moon's phase with drawing their models. The results of this study showed that the textbooks now in use explain the phase of the Moon with one unique scientific model, while students displayed 6 different kinds of models including the scientific model. Furthermore the students tend to have comparatively scientific model modes as their grades increase and their scholastic ability levels become higher. Although the students have learned the Moon's phase in school, they still have alternative models because the textbook does not explain enough for the students to overcome their alternative conceptions. In the textbook, the model presented without explanation of the limitation of the model, so there can be a gap between the model in the textbooks and the models in the mind of students. With these findings, we propose complementary models for helping secondary school students to develop their understanding of moon phases.

Moon Imaging for the Calibration of the COMS Meteorological Imager (천리안 위성의 기상탑재체 보정을 위한 달 영상 획득 방안)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • COMS accommodates multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. In order to improve the quality of MI visible channel, the moon image has been taken into account as backup reference in addition to Albedo monitoring. However, obtaining the moon image by adding special mission schedule is not recommended after IOT, because we may miss chances to obtain meteorological images during the time slots for special imaging. As an alternative solution, an approach extracting moon image from MI FD(Full Disk) image has been proposed when the moon is positioned near to the earth. However, prediction of acquisition time of moon image is somewhat difficult as the moon moves while the MI is scanning type sensor. And the moon can not be seen when it is behind the earth or outside of FD field of view. This paper discusses how effectively the moon can be detected by the MI FD imaging. For that purpose, this paper describes an approach taken to predict the time when the moon image is achievable and then introduces the results obtained from computer simulation.

Tenth Graders' Ideas concerned with Earth's Rotation according to Interest and Learning style (흥미와 학습양식에 따른 고등학교 1학년 학생들의 지구의 자전 관련 개념)

  • Jeong, Jin-Woo;Jung, Jae-Gu;Moon, Sang-Yeon;Moon, Byoung-Chan
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.532-544
    • /
    • 2004
  • The purpose of this study is to analyze the concept concerned with Earth's rotation as passed by tenth graders whose interest in earth's rotation and learning styles were varied. To examine student's interest in the Earth's rotation, 4students (visual-verbal learning style student with much interest, visual learning style student with much interest, visual learning style student with little interest, and verbal learning style student with little interest) were chosen for study. Personal interview was used for this study. To probe students' conception in varied ways, they were allowed to make gesture and draw pictures through data collection process, except for interviews. And the data were analyzed one by one. The result of this study were as follows: First, the student with much interest was faster to answer the questions about Earth's rotation than the one with little interest. Also he comprehended better and was able to explain reasons coherently. Second, there was little difference according to student's learning style. Third, one of the repeated misconception was direction. For thinking that is the right side is the east side, students have misconception that the sun goes from right to left and stars in north sky move clock-wise.

Interdecadal Variation of Wintertime Blocking Frequency over the Siberia

  • Lee, Hyun-Soo;Jhun, Jong-Ghap;Kang, In-Sik;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.556-562
    • /
    • 2007
  • The interdecadal variation of wintertime blocking frequency over the Siberia ($60^{\circ}E-140^{\circ}E$) is examined using the ECMWF/NCEP-NCAR re-analysis data for the period 1958-2006. The wintertime blocking frequency over the Siberia significantly decreased for the period 1986-2006, compared to the period 1958-1985, which is mainly due to the anomalous circulation of 500-hPa geopotential height field. During the period 1986-2006, there was enhancement in both the anomalous cyclonic flow over the western Siberia and the anomalous anticyclonic flow over the east Asia. These anomalous circulation patterns, which might be associated with changes in surface temperatures over the Asian continent, are suspected to playa possibly important role as an obstacle to the formation of blocking flow over the Siberia.