• Title/Summary/Keyword: Earth Curvature

Search Result 58, Processing Time 0.019 seconds

LOS Analysis Algorithm for Mid-range Guided Weapon System (중거리지대공 유도무기체계 적용을 위한 가시선 분석 알고리듬 연구)

  • Lee, Han-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.642-649
    • /
    • 2010
  • LOS analysis is used for optimal deployment of mid-range guided weapon system or system engagement effectiveness simulation. Comparing to real-world, LOS analysis includes error sources such as coarse terrain data resolution, refraction of radio waves, and several ideal assumptions. In this research, exact LOS algorithm under assumption of constant earth curvature and error analysis of that is investigated. It proved that LOS algorithm under assumption of constant earth curvature has negligible error in mid-range guidance weapon system's scope.

Numerical sensitivity analysis for the reinforcement effect of a curvature of a tunnel floor on soft grounds (연약지반에 위치한 터널 바닥부 곡률의 보강효과에 대한 수치해석적 민감도 분석)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.61-76
    • /
    • 2021
  • As the number of existing road tunnels increases every year, collapse and floor heaving accidents occur frequently during construction. The collapse among tunnel accidents dominates, so that studies related to the floor heaving are relatively insufficient. Accordingly, many studies to reinforce the lower part of the tunnel have been conducted, but the analysis on the effect of the curvature of the tunnel floor is insufficient. Therefore, in this study, the effects of the upper analysis area height and the coefficient of lateral earth pressure of the tunnel located on a tuff deterioration zone with a large rock cover, as well as the floor curvature, were examined through sensitivity analysis. As a result of the analysis, it turned out that the overall stability of the tunnel increases as the floor curvature increases, the coefficient of lateral earth pressure decreases, and the upper analysis region increases.

Experimental investigation of earth pressure on retaining wall and ground settlement subjected to tunneling in confined space

  • Jinyuan Wang;Wenjun Li;Rui Rui;Yuxin Zhai;Qing He
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.179-191
    • /
    • 2023
  • To study the influences of tunneling on the earth pressure and ground settlement when the tunnel passes through the adjacent underground retaining structure, 30 two-dimensional model tests were carried out taking into account the ratios of tunnel excavation depth (H) to lateral width (w), excavation width (B), and excavation distance using a custom-made test device and an analogical soil. Tunnel crossing adjacent existing retaining structure (TCE) and tunnel crossing adjacent newly-built retaining structure (TCN) were simulated and the earth pressure variations and ground settlement distribution during excavation were analyzed. For TCE condition, the earth pressure increments, maximum ground settlement and the curvature of the ground settlement curve are negatively related to H/B, but positively related to H/s and H/w. For TCN condition, most trends are consistent with TCE except that the earth pressure increments and the curvature of ground settlement curve are negatively related to H/w. The maximum ground settlement is larger than that observed in tunnel crossing the existing underground structure. This study provides an assessment basis for the design and construction under confined space conditions.

Upward Continuation of Potential Field on Spherical Patch Area (구면부분지역에서의 퍼텐셜마당의 상향연속)

  • Na, Sung-Ho;Chung, Tae Woong;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.245-248
    • /
    • 2012
  • Two dimensional Fourier transform can be used for the upward continuation of gravity or magnetic field data acquired at given altitude over a rectangular area. Earth's curvature is often neglected in most potential field continuations, however, it should be considered over several hundred kilometer field area. In this study, we developed a new method retaining terms of Earth's curvature to better perform the continuation of potential field on spherical patch area.

Selection of Optimal Band Combination for Machine Learning-based Water Body Extraction using SAR Satellite Images (SAR 위성 영상을 이용한 수계탐지의 최적 머신러닝 밴드 조합 연구)

  • Jeon, Hyungyun;Kim, Duk-jin;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, JaeEon;Kim, Taecin;Jeong, SeungHwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.120-131
    • /
    • 2020
  • Water body detection using remote sensing based on machine interpretation of satellite image is efficient for managing water resource, drought and flood monitoring. In this study, water body detection with SAR satellite image based on machine learning was performed. However, non water body area can be misclassified to water body because of shadow effect or objects that have similar scattering characteristic comparing to water body, such as roads. To decrease misclassifying, 8 combination of morphology open filtered band, DEM band, curvature band and Cosmo-SkyMed SAR satellite image band about Mokpo region were trained to semantic segmentation machine learning models, respectively. For 8 case of machine learning models, global accuracy that is final test result was computed. Furthermore, concordance rate between landcover data of Mokpo region was calculated. In conclusion, combination of SAR satellite image, morphology open filtered band, DEM band and curvature band showed best result in global accuracy and concordance rate with landcover data. In that case, global accuracy was 95.07% and concordance rate with landcover data was 89.93%.

The effect of jaw's curvature on Brazilian tensile strength of rocks

  • Yousefi, Halime;Fereidooni, Davood
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.165-178
    • /
    • 2020
  • This paper investigates the effect of the jaw's curvature, also known by contact angle and jaw arc central angle (2α), of the Brazilian test apparatus on indirect tensile strength of various rock types. That's why, ten rock samples including limestone, marble, skarn, granite, diorite, and granodiorite were collected from some quarries in different provinces of Iran. Petrographic, mineralogical and textural investigations were performed using thin section analyses. Physical properties of the selected rock samples namely dry and saturated unit weights, porosity, water absorption, and specific gravity were determined for the rock samples. In addition, Brazilian tensile strength at different 2α angles (i.e., 2α = 0°, 10°, 15°, 20°, 45°, and 60°) were determined for the rocks in the laboratory. Results show that the parameter for the rocks is between 3.81 MPa at 2α=0° and 54.76 MPa at 2α=60°. This means that Brazilian tensile strength increased with increasing 2α angle from 0° to 60°. Also, it was found that the highest change rate of the Brazilian tensile strength occurs in range of 2α=15°-30° for most studied rock samples. In some tested samples, the parameter is decreased only at 2α = 60°. The values of Brazilian tensile strength of the rocks tested by flat and standard jaws are near to each other.

Precise Terrain Torrection for Gravity Measurement Considering the Earth's Curvature (지구 곡률을 고려한 중력의 정밀 지형보정)

  • Choi, Kwang-Sun;Lee, Young-Cheol;Lim, Mu-Taek
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.825-837
    • /
    • 2007
  • The researchers compiled two sets of digital terrain data released by NORI (National Oceanographic Research Institute, Korea) and NIMA (National Imagery and Mapping Agency, USA) respectively and analyzed a new set of $3"{\times}3"$ gridded terrain data in order to calculate terrain correction value in gravity in and around the Korean Peninsula. Using this new set of terrain data, the researchers developed an effective algorithm to calculate precise terrain correction value in gravity considering Earth's curvature and coded a fortran program to evaluate terrain correction value covering the surface of which the radius reaches up to 166.735 km. The researchers also calculated terrain correction value over the southern part of Korea. According to the statistics of terrain correction value calculated in and around the Korean Peninsula up to 166.735 km of surface radius, the maximum value soars to 56.508 mGal and the mean value is 4.539 mGal.

Mechanical behavior of coiled tubing over wellhead and analysis of its effect on downhole buckling

  • Zhao, Le;Gao, Mingzhong;Li, Cunbao;Xian, Linyun
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.199-210
    • /
    • 2022
  • This study build finite element analysis (FEA) models describing the bending events of coiled tubing (CT) at the wellhead and trips into the hole, accurately provide the state of stress and strain while the CT is in service. The bending moment and axial force history curves are used as loads and boundary conditions in the diametrical growth models to ensure consistency with the actual working conditions in field operations. The simulation diametrical growth results in this study are more accurate and reasonable. Analysis the factors influencing fatigue and diametrical growth shows that the internal pressure has a first-order influence on fatigue, followed by the radius of the guide arch, reel and the CT diameter. As the number of trip cycles increase, fatigue damage, residual stress and strain cumulatively increase, until CT failure occurs. Significant residual stresses remain in the CT cross-section, and the CT exhibits a residual curvature, the initial residual bending configuration of CT under wellbore constraints, after running into the hole, is sinusoidal. The residual stresses and residual bending configuration significantly decrease the buckling load, making the buckling and buckling release of CT in the downhole an elastic-plastic process, exacerbating the helical lockup. The conclusions drawn in this study will improve CT models and contribute to the operational and economic success of CT services.

Extension for Downward Continuation of the Method of "Upward Continuation of Potential Field on Spherical Patch Area" ("구면부분지역에서 퍼텐셜마당의 상향연속"의 하향연속 확장적용)

  • Na, Sung-Ho;Chung, Tae Woong;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.59-62
    • /
    • 2013
  • We formerly reported a new method for the upward continuation of potential field on spherical patch area including Earth's curvature, which has been neglected in most studies on rectangular area with flat Earth assumption. This new method is applicable to downward continuation as well by only assigning corresponding value for the ratio of two radii; $r_2/r_1$, i.e., target radius $r_2$ versus datum radius $r_1$. In addition, the inherent problem of this method due to spherical surface geometry is described, and its one possible remedy is given.

Research on the Propagation Mode Theory of Marine RFID in the Fresnel Zone (프레넬 영역에서의 해상용 RFID 전파모드 이론 고찰)

  • Yim Jeong-Bin;Ku Ja-Young;Lee Jae-Eung
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.65-69
    • /
    • 2005
  • The theoretical propagation modes of radio waves in the area of Line of Sight(LOS) within Fresnel zone are searched for the available detection ranges in a Marine RFID (Radio Frequency Identification). The structural LOS model to Earth's curvature is proposed and, the calculation method of horizontal distance in a specific radio frequency is also considered in this work As studying results, it is found that the height of antenna to cover the detection ranges and the influences of detection ranges by weather environments can be analyse with the theoretical methods.

  • PDF