• Title/Summary/Keyword: Early aged concrete

Search Result 48, Processing Time 0.032 seconds

Compressive Strength Properties of high strength concrete considering Adiabatic temperature rise of hot weather environment (서중환경의 단열온도상승 특성을 고려한 고강도 콘크리트의 압축강도 특성)

  • Lee, Eun Kyoung;Ham, Eun-Young;Koo, Kyung-Mo;Lee, Bo-Kyeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.56-57
    • /
    • 2013
  • In this study, in regard to concrete considering variety of admixture content rate, we evaluated property of adiabatic temperature rise. By setting up high temperature history, we evaluated effect to compression strength property of high strength concrete by early high temperature history. As a result, early high temperature history accelerated Hydration reaction of cement and contribute early strength development but it didn't accomplish performance objective in long-term aged.

  • PDF

Comparison of the Pavement Performance for Concrete Overlay and Asphalt Overlay on Aged Cement Concrete Pavement (노후화된 시멘트 콘크리트 포장에 대한 콘크리트 및 아스팔트 덧씌우기의 포장성능 비교)

  • Lee, Seung-Woo;Son, Hyeon-Jang
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • More than sixty percentage of highway in South Korea were constructed by concrete pavements and more than half of the concrete pavements were twenty years or older. Maintenance and rehabilitation of aged cement concrete pavements required early transportation opening due to difficulty of preparing bypass roads, given South Korea's transportation condition and so far, mostly asphalt concrete overlay has been used. However, asphalt concrete pavement maintenance and rehabilitation is costly because of early damage and at the same time, it causes inconvenience to the road users. Recently, as an effective method of rehabilitation for aged cement concrete pavement, bonded concrete overlay is being attempted. Therefore, utilizing various data on year-by-year basis is needed to rationally analyze of the damage on asphalt concrete overlay and bonded concrete overlay is necessary. However, in South Korea database of Serviceability damage on asphalt concrete overlay and bonded concrete overlay does not exist. In this research, performance is evaluated by the LTPP (Long Term Pavement Performance) Data of U.S.A, which accumulated various damage data of asphalt concrete overlay and bonded concrete overlay. However, the pattern distress of asphalt concrete overlay and bonded concrete overlay are different. Therefore, the pavement distress data of each section is collected into database and distress are calculated PCI(Pavement Condition Index) in order to compare life of asphalt concrete overlay and bonded concrete overlay.

Modeling on Compressive Strength in High Performance Concrete Using Porosity (공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링)

  • Lee, Hack Soo;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.124-133
    • /
    • 2012
  • Compressive strength in concrete increases with time. Regression analysis with time is conventionally performed for strength evaluation and prediction. In this study, hydrate amount is assumed as a function of hydration rate and porosity, and modeling on compressive strength is carried out considering decreasing porosity with time, which does not need the regression analysis with time. For twenty one mix proportions of HPC (High Performance Concrete), DUCOM (FE program) which can simulate the behavior in early aged concrete is utilized, and porosity from each mix proportions is obtained with time. For HPC with OPC (Ordinary Portland Cement) concrete, modeling on compressive strength is performed considering hydration rate, unit content of cement, and porosity with time. For HPC with mineral admixtures, a long-term parameter which can handle long-term strength development is additionally considered. From the comparison with the previous test results, the applicability of the proposed model is verified.

Study on Permeability Characteristics of Cement Mortar under Carbonation (탄산화 진행에 따른 시멘트 모르타르의 투수특성에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.185-188
    • /
    • 2006
  • During the carbonation process in concrete, the rate of carbonation depends on porosity and moisture content of the concrete. For underground reinforced concrete structures, the interior concrete surface may be exposed to carbonation and the exterior concrete surface exposed to moisture due to wet soil or underground water. In this study, the permeability coefficients in mortar partially carbonated is derived as a function of carbonation depth and porosity of mortar by applying the so-called micro pore structure formation model (MPSFM) which was developed for the modeling of early-aged concrete. The permeability coefficient obtained from the micro-level modeling of carbonated mortar is verified with the results of accelerated carbonation test and water penetration test in cement mortar.

  • PDF

Innovative Transient Thermal Gradient Control to Prevent Early Aged Cracking of Massive Concrete (매스콘크리트의 열경사 조절에 의한 수화열과 온도균열의 방지)

  • Kim, Seong-Soo;Cho, Tae-Jun;Lee, Jeong-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.164-172
    • /
    • 2008
  • The heat of hydration for early aged mass concrete induces high temperature with the hydration. Control of the temperature difference across a section is an effective strategy to minimize the hydration heat induced cracks for the structures where internal restraint is dominant. The current prevention methods for hydration cracking show some limitations for the control of thermal gradients, and these limitations could make micro and macro cracks in surface and core of concrete. Especially cooling methods can decrease the increasing hydration temperature, but it can not prevent the problem while decreasing temperature. Consequently heating pipes are added simultaneously with the cooling pipes in order to control the temperature gradients between core and surface of the concrete, followed by the finite element analysis (FEA). Based on the FEA, the proposed method using cooling pipe and heating pipes together has been found to be an effective alternative in thermal gradient control, in terms of controlling temperature induced cracks significantly.

A Study on the Practicality of Surface Adibatic Curing Method for Cold Weathering Construction (동절기 공사를 위한 표면단열 양생방법의 실용화에 관한 연구)

  • Lee, Do-Bum;Choi, Il-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.491-494
    • /
    • 2005
  • This study was carried out to examine application of surface adiabatic curing method in slightly cold weathering period. So, early aged freezing damage and compressive strength of concrete were examined through temperature analysis of construction concrete. Temperature analysis was carried out according to the average temperature, concrete placement completion time and surface adiabatic curing method. Analysis results show that additional curing plans are demanded in concrete construction below 0$^{circ}C$, surface adiabatic curing method is could apply in the average temperature more than -2$^{circ}C$ and curing method as heating are needed under -2$^{circ}C$.

  • PDF

A Study on the Factors Affecting on the Life of Bonded Concrete Overlay Pavement using the LTPP Data of U.S.A (미국 LTPP Data를 활용한 접착식 콘크리트 덧씌우기 포장 수명에 영향을 미치는 인자에 관한 연구)

  • Lee, Seung Woo;Son, Hyeon Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.555-564
    • /
    • 2011
  • More than sixty percentages of the highway constructed by concrete pavements in South Korea and over half of the concrete pavements were twenty years or older. The most of South Korea road is hard to provide a bypass in conditions of network of roads. Asphalt concrete overlay has been used for the overlay of aged concrete pavement. However, the cost of maintenance and rehabilitation in an asphalt overlay is expensive by early damage. Therefore, bonded concrete overlay was recently attempted in South Korea as an alterative method of rehabilitation for aged concrete pavement. Hence, it needed to investigate the factors to find performance of the bonded concrete overlay life. However, there is no performance data of the concrete overlay in South Korea. This study was to make a database of an affecting of the pavement life and draws statistical analysis of the performance data on the LTPP (Long Term Pavement Performance) database of U.S.A.

Evaluation of Engineering Properties in Early-Age Concrete with TDFA (TDFA를 혼입한 초기재령 콘크리트의 공학적 특성 평가)

  • Park, Jae-Sung;Park, Sang-Min;Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • This paper presents an evaluation of engineering properties in TDFA(Tire Derived Fuel Ash)- based concrete in early age. Concrete containing 0.5 of w/b(water to binder) ratio and 20% of FA(Fly Ash) replacement ratio are prepared, and FA content are replaced with TDFA from 3% to 12% for evaluating the effect of TDFA on fresh and hardened concrete properties. With higher than 6% of TDFA replacement ratio, workability is significantly worsened but it is improved with more SP(Super plasticizer) and AE(Air Entrainer) agent. Concrete with 6~12% of TDFA shows reasonable strength development and better resistance to carbonation and chloride attack in spite of early-aged condition. However concrete with 6% TDFA shows poor resistance to freezing and thawing action due to insufficient air content. If air content and workability are obtained, replacement of TDFA to 12% can be used for concrete with FA.

Evaluation on the Prediction Model for the Compressive Strength of Concrete mixing Blast Furnace Slag Powder at early-aged by Maturity Method (적산온도에 의한 고로슬래그 미분말 혼입 콘크리트의 초기재령 압축강도의 예측 모델식 적용성 평가)

  • Yang, Hyun-Min;Park, Won-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.251-252
    • /
    • 2012
  • The exiting studies on the strength prediction by maturity method is mainly focused on concrete using OPC, meanwhile the study on the concrete mixing blast furnace slag powder (BFSP) is insufficient. The purpose of this study is to investigate the relationships between compressive strength and equivalent age by existing Maturity functions, i.e., Nurse-saul function Arrhenius function. This study also compared and examined the strength prediction of concrete mixing BGSP using ACI model and Logistic Curve prediction equation. Therefore, it is intended that fundamental data are presented for quality management and process management of concrete mixing BFSP.

  • PDF

A Study on Change in Cement Mortar Characteristics under Carbonation Based on Tests for Hydration and Porosity (수화물 및 공극률 관측 실험을 통한 시멘트모르타르의 탄산화 특성 변화에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.613-621
    • /
    • 2007
  • Due to the increasing significance of durability, much researches on carbonation, one of the major deterioration phenomena are carried out. However, conventional researches based on fully hardened concrete are focused on prediction of carbonation depth and they sometimes cause errors. In contrast with steel members, behaviors in early-aged concrete such as porosity and hydrates (calcium hydroxide) are very important and may be changed under carbonation process. Because transportation of deteriorating factors is mainly dependent on porosity and saturation, it is desirable to consider these changes in behaviors in early-aged concrete under carbonation for reasonable analysis of durability in long term exposure or combined deterioration. As for porosity, unless the decrease in $CO_2$ diffusion due to change in porosity is considered, the results from the prediction is overestimated. The carbonation depth and characteristics of pore water are mainly determined by amount of calcium hydroxide, and bound chloride content in carbonated concrete is also affected. So Analysis based on test for hydration and porosity is recently carried out for evaluation of carbonation characteristics. In this study, changes in porosity and hydrate $(Ca(OH)_2)$ under carbonation process are performed through the tests. Mercury Intrusion Porosimetry (MIP) for changed porosity, Thermogravimetric Analysis (TGA) for amount of $(Ca(OH)_2)$ are carried out respectively and analysis technique for porosity and hydrates under carbonation is developed utilizing modeling for behavior in early-aged concrete such as multi component hydration heat model (MCHHM) and micro pore structure formation model (MPSFM). The results from developed technique is in reasonable agreement with experimental data, respectively and they are evaluated to be used for analysis of chloride behavior in carbonated concrete.