• Title/Summary/Keyword: EXPOSURE

Search Result 15,168, Processing Time 0.042 seconds

Aging Characteristics of Carbon Fiber/Epoxy Composite Ring Specimen (탄소섬유/에폭시 복합재 링 시편의 노화 특성 평가)

  • Yoon, Sung-Ho;Oh, Jin-Oh
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.39-44
    • /
    • 2009
  • The effect of exposure times on the aging characteristics of carbon fiber/epoxy composite ring specimen was evaluated using an accelerating aging tester. Combined exposure conditions, such as temperature, moisture, and ultraviolet, were applied up to 3000 hours. Tensile properties and flexural properties including the effect of curvature were evaluated on the specimens subject to various exposure times through a material testing system. Their aging surfaces were observed through a scanning electron microscope. According to the results, tensile modulus was little affected by the exposure times. However, tensile strength, at the early stage of the exposure times, increased due to physical aging and curing reaction, but tensile strength slightly decreased due to degradation as the exposure times increased. The flexural modulus and flexural strength increased at the early stage of the exposure times, but slightly decreased as the exposure times increased. Aging surfaces of the specimens examined using the scanning electron microscope revealed a different morphology in various exposure times and provided useful information for identifying the degradation in mechanical properties of the composite subject to various exposure times.

Comparative Analysis of Exposure to Hazardous Factors of Welding Lab Activities in Specialized High School (특성화 고등학교 용접 실습의 유해인자 노출 실태 비교 분석)

  • Min-Ju Kim;Seong-Eun Jang;Hwa-Il Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.2
    • /
    • pp.156-165
    • /
    • 2024
  • Objectives: This study aims to identify and analyze the exposure status of welding students in specialized high school welding labratories, compare it with the exposure to welding hazards of industrial workers, and seek to improve the educational environment for youth through domestic and international exposure standards. Methods: This study compares the level of exposure to hazardous factors in a welding laboratory of a vocational high school in Jeollanam-do and a welding process in a general industrial site by measuring the work environment. A 10-question survey was conducted to review the effects of welding hazards on the human body, carcinogenicity information, international (US, UK, France) exposure standards, general characteristics between the two groups, and awareness of occupational health. Results: Exposure to hazardous factors in both groups was below the standards set by MOEL. Specialized high school students were exposed to higher levels than workers, and some hazardous factors exceeded the standards when compared to international exposure standards. During the survey, students were less aware of the hazards of welding, safety and health education, and the need for work environment measurement than workers. Conclusions: For the respiratory protection of students in vocational high school welding labs, it is necessary to create a comfortable training environment. Exposure standards for harmful factors should be strictly applied, such as overseas standards, or exposure should be limited by setting a limit on the number of hours of welding practice per week. In addition, it is necessary to conduct safety and health education for welding students to raise their awareness of the importance of measuring the working environment and wearing appropriate protective equipment.

Ultrafine Particle Toxicities, Current Measurement Techniques and Controls (Ultrafine Particle의 독성, 측정방법 및 관리)

  • Lee, Su-Gil;Kim, Seong-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.203-215
    • /
    • 2010
  • This study is an overview of toxicities and measurement techniques of ultrafine particles (UFPs), and their exposure controls. UFPs are ubiquitous in many working situations. Exposure to UFPs is possibly causing adverse health symptoms including cardio-respiratory disease to humans. In order to measure exposure levels of airborne UFPs, there are current available measurement guidelines, instruments and other techniques (i.e. contour mapping, control banding). However, these risk assessment techniques including measurement techniques, controls and guidelines are dependent on background levels, metrics (e.g. size, mass, number, surface area, composition), environmental conditions and controls. There are no standardized measurement methods available and no generic and specific occupational exposure standards for UFPs. It is thought that there needs to be more effort to develop Regulations and Exposure Standards for generic UFPs should be based on more exposure data, health surveys, toxicological data and epidemiological data. A carefully considered hierarchy of controls can also reduce the maximum amount of airborne UFPs being emitted from diverse sources in industries.

Assessment of Worker's Diisocyanates Skin Exposure at Polyurethane Foam Manufacturing Companies (우레탄 폼 제조 사업장 작업자의 디이소시아네이트 피부노출 평가)

  • Jeong, Jee Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • Objectives: Skin exposure to diisocyanates may be an important risk factor for respiratory sensitization to leading asthma. However little is known about the extent of worker's diisocyanates skin exposure and the effectiveness of personal protective equipments in polyurethane foam manufacturing companies. This study provides data on diisocyanates skin exposure, surface diisiocyantes contamination of foams and the effectiveness of personal protective gloves in five polyurethane foam manufacturing companies. Materials and methods Colorimetric SWYPE pads are used for the determination of diisocyanates on surfaces of workers skin and polyurethanes foams. Results: The forearms, necks and faces of workers in polyurethane foam manufacturing companies were found to be contaminated with diisocyanates. Heavy contamination with uncured diisocyanates at large block foams surfaces were found. Personal gloves of workers for skin protection showed significant penetrations by diisocyanates. Conclusions: We found that all workers in polyurethane foam manufacturing companies could be exposed to diisocyanates by skin exposure. Also further researches which would better quantify skin exposure are needed.

Effect of electromagnetic field exposure on the reproductive system

  • Gye, Myung-Chan;Park, Chan-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and $[Ca^{2+}]i$ may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels.

A Study on the Exposure and Free Space Scattered Dose in Radiography (X선 촬영시 피폭선량 및 실내공간선량에 관한 연구)

  • Ahn, Bong-Seon;Lee, Kyu-Eun;Seon, Jong-Ryul
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.26-30
    • /
    • 1998
  • We tried to study in order to furnish the data for medical exposure dose and scattered ray in radiography. As the tables(from 1 to 3) show, we can presume, by means of a concrete numerical value, the amount of results affected by patient radiation exposure dose and somatic effect in radiography. However, there are many difficulties in the difference of exposure factor in each hospital, the accuracy of measuring by tracebility, shortage of exposure dose data especially in the area of children, and portable radiography, etc. In the radiation examination, it is considered if the gained benefit to the patient due to radiation is more than the risk of radiation, then the medical exposure is thought to be justified. Therefore, the radiotechnologists should continually make an effort to develop and study new techniques so as to reduce patient exposure dose.

  • PDF

Application of Biomarkers for the Assessment of Carcinogen Exposure and Cancer Risk (발암물질 노출량 산출 및 암 위해성 평가에 있어서 Biomcrker의 활용)

  • 이병무
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • Risk Assessment is an important area in toxicology and the methodology for risk assessment has been developed. Mathematical models used for risk assessment include one-hit multi-hit, two-stage, probit logistic, multistage, and linearized multistage models. For the assessment of exposure dose, environmental monitoring has been applied, but it has limitation to accurately assess exposure level because the levels in the air, water, foods, and soil may vary depending on time of sampling. In addition, humans can be exposed to various sources of exposure and thus it will be impossible to estimate the total level of exposure in humans by environmental monitoring. To eliminate the limitation of environmental monitoring, a direct measurement of toxic materials or modified biomolecules (called biomarkers) associated with the exposure of toxic materials is needed. Here, scientific basis of biomarkers and future direction have been considered for the assessment of carcinogen exposure and cancer risk in humans.

  • PDF

의복의 친숙성과 의복인상평가의 변화

  • 김인숙
    • Journal of the Korean Society of Costume
    • /
    • v.23
    • /
    • pp.45-52
    • /
    • 1994
  • The aim of this study was to inspect the change of the evaluation scores of the clothing according to the numbers of simple exposure. Two cuts of slides representing a 29-years old female figure clothed either in formal suits or in casual were shown to 41 college female students majoring in clothing and textiles. Questionnaire consisted of 9-point bipolar semantic differentials was given out at 1, 3, 5, 7, 9 times of slide exposure. Results were : 1. The evaluation score was the highest after 3 times of exposure . At after 5 times of exposures the score decreased abruptly and increased slightly thereafter. 2. Th evaluation score of the formal suit was higher at the first exposure , but the casual acquired higher score after 3 times of exposure and maintained the superiority thereon. 3. The final score of evaluation of clothing was most similar with the score of after-7-times of exposure, but was almost similar with that of after -5-times of exposure.

  • PDF

Developing Korean Standard for Nanomaterial Exposure Assessment

  • Lee, Ji-Hyun;Lee, Jun-Yeob;Yu, Il-Je
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.53-60
    • /
    • 2011
  • Nanotechnology is now applied to many industries, resulting in wide range of nanomaterial-containing products, such as electronic components, cosmetic, medicines, vehicles, and home appliances. Nanoparticles can be released throughout the life cycle of nanoproducts, including the manufacture, consumer use, and disposal, thereby involving workers, consumers, and the environment in potential exposure. However, there is no current consensus on the best sampling method for characterizing manufactured-nanoparticle exposure. Therefore, this report aims to provide a standard method for assessing nanoparticle exposure, including the identification of nanoparticle emission, the assessment of worker exposure, and the evaluation of exposure mitigation actions in nanomaterial-handling workplaces or research institutes.

Curing characteristics of the Photocurable Resin for Fabrication of Micro-structures with overhang shape (돌출 형상을 가진 마이크로 구조물 가공을 위한 광경화성 수지의 경화 특성)

  • Jeoung M.G.;Choi J.W.;Ha Y.M.;Lee S.H.;Kim H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.491-492
    • /
    • 2006
  • In the microstereolithography which can make 3-D microstructures, curing depth is different according to exposure energy. Curing depth has to be controlled to fabricate complex 3-D microstructures with overhang shape. It becomes increases when the exposure energy increases. And photocurable resin is cured when the exposure energy is bigger than critical energy. So optimal exposure energy has to be found to fabricate overhang structures without being gel. To make thinner layer, UV absorber is used and exposure pattern is changed. In this paper, we find curing characteristics according to exposure energy, and fabricate microstructures with overhang shape.

  • PDF