• Title/Summary/Keyword: EVA (Ethylene Vinyl Acetate)

Search Result 146, Processing Time 0.025 seconds

Effect of Composition of EVA-based Hot-Melt Adhesives on Adhesive Strength (EVA계 핫멜트 접착제의 조성이 접착력에 미치는 영향)

  • Lee, Jung-Joon;Song, Yu-Hyun;Lim, Sang-Kyun;Park, Dae-Soon;Sung, Ick-Kyung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.155-161
    • /
    • 2010
  • A series of ethylene vinyl acetate (EVA) based hot melt adhesives containing different types and compositions of tackifier resins were prepared to investigate their rheological behavior and T-peel adhesion strength on polyurethane (PU) elastomeric sheets. C5 aliphatic hydrocarbon resin (C5 resin), C9 aromatic hydrocarbon resin (C9 resin), hydrogenated dicyclopentadiene resin ($H_2$-DCPD resin), and dicyclopentadiene and acrylic monomer copolymer resin (DCPD-acrylic resin) were used as the tackifiers for the hot melt adhesives. To determine the polarity of the tackifiers, their oxygen contents were analyzed, and the DCPDacrylic resin was found to contain an oxygen content higher than the other tackifiers. Only the DCPD-acrylic resin showed complete miscibility with EVA and the homogeneous phase of the hot melt adhesive blends at all compositions. The T-peel adhesion strength between the hot melt adhesives and polyurethane elastomeric sheets was mainly affected by the polarity of the tackifier resins in the hot melt adhesives, rather than by the storage moduli, G', of the hot melt adhesives themselves.

The Comparative Analysis on Mechanical Property Test of Carbon Nanotube-based Shock Absorbers (탄소나노튜브를 기반으로 하는 충격흡수제의 물리적 특성 비교분석)

  • Kim, Jong-Woo;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.237-242
    • /
    • 2012
  • The purpose of this study was (a) to develop carbon nanotube-based shock absorbers for reducing potentially harmful impact forces and excessive foot pronation, and (b) to briefly determine how the effects of carbon nanotube-based shock absorbers on biomechanical variance during drop landing. A university student(age: 24.0 yrs, height: 176.2 cm, weight: 679.5 N) who has no musculoskeletal disorder was recruited as the subject. Hardness, specific gravity, tensile strength, elongation, 100% modulus, tear strength, split tear strength, compression set, resilience, vertical GRF, and loading rate were determined for each material. For each dependent variable, a descriptive statistics was used for different conditions. The property test results showed that tensile strength, tear strength, split tear strength, compression set, and resilience in carbon nanotube-based shock absorbers were greater than general Ethylene Vinyl Acetate(EVA). These indicated that resistance against variable strength in developed carbon nanotube-based shock absorbers were greater than general EVA. In vertical GRF of CNTC was less than those of EVA during drop landing and loading rate of CNTC was greater than EVA. It seems that the use of CNT can be a effective way of reducing and controlling shock from impact.

The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유 보강 EVA 콘크리트의 압축강도 및 내구성)

  • Nam, Ki Sung;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.11-19
    • /
    • 2015
  • The important properties of EVA (ethylene vinyl acetate) redispersible polymer was waterproof, densification of internal pore space of concrete and ball bearing and micro filler. Also, the significant role of polypropylene(PP) fiber was crack control and blockade of movement for deterioration factors. The most studies for EVA were limited in the field of mortar and PP fiber reinforced concrete had been studied in the state of being restricted unit water content, rich mix and mixing much of the fiber without considering construction site. Therefore, the control mix design were applied in ready mixed concrete using 10 % fly ash of total cement weight used in batch plant. On the basis of control mix design, EVA contents ranging from 0 % to 10 % of total cement weight and PP fiber contents ranging from 0 % to 0.5 % of EVA concrete volume were used in the mix designs. The results showed the maximum compressive strength value was measured at EVA 5.0 % and PP fiber 0.1 %, the minimum water absorption ratio was at EVA 10 % and PP fiber 0 %, the durability factor for freezing and thawing resistance was at EVA 5.0 % and PP fiber 0.3 % and the minimum weight reduction ratio of resistance to sulfuric acid attack was at EVA 10 % and PP fiber 0.5 % after curing age 42days. Meanwhile, From these results, PP fiber reinforced EVA concrete would be very benefit, if each optimal mix types were used in hydraulic structures, underground utilities and agricultural structures.

Strength Properties of Polymer-Modified Cement Mortar (분말형 폴리머 시멘트모르타르의 강도 특성)

  • Kim, Seong-Soo;Jung, Ho-Seop;Lee, Jeong-Bae;Yoon, Ha-Young;Han, Seung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.571-574
    • /
    • 2005
  • This study investigated the strength of concrete to improve construction material with polymer cement mortar. Some mixtures composed of Styrene-Butadiene Rubber(SBR) and Ethylene Vinyl Acetate(EVA) Poly Vinyl Alcohol(PVA) were studied. The three mixtures carried out the physical, mechanical test to determine its properties which a include : compressive, flexural, bond strength test. The test results show that the compressive strength was increased at long-term age when compared to early ages for increasing polymer contents. It was found that flexural strength and bond strength became larger as polymer to cement ratio became higher.

  • PDF

Preparation and Characterization of Antimicrobial Composite Film Containing Calcined Oyster Shell Powder (굴 패각 분말을 함유한 항균성 복합 필름의 제조 및 특성 연구)

  • Park, Kitae;Kambiz, Sadeghi;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In this study, ethylene vinyl acetate (EVA) and low density polyethylene (LDPE) composite films (EVA/LDPE-OSP) containing calcined oyster shell powder (OSP) were prepared using twin-screw extruder as an antimicrobial packaging material. The OSP composite was initially prepared and then incorporated into an EVA/LDPE blend at different ratios (0, 1, 3 and 5%) to develop the EVA/LDPE-OSP composite films. The as-prepared EVA/LDPE-OSP composites films were evaluated using FT-IR, DSC, TGA, OTR, WVTR, SEM and UTM as well as antimicrobial activity was examined using JIS Z 2801:2000 standard. OPS endowed the antimicrobial potency to the composite films against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. In addition, the incorporation of OSP remarkably enhanced the thermal stability. OSP as a natural biocidal agent can be used as a multifunctional additive in packaging industry such as improving the thermomechanical properties and preventing the microbial contamination of packaged products.

Development of Polymer-Concrete Composite(I) - Physical Properties of Polymer-Cement Concrete Composites - (폴리머-콘크리트 복합재료 개발(I) - 폴리머-시멘트 콘크리트의 물성 -)

  • Hwang, Eui-Hwan;Kil, Deog-Soo;Oh, In-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.979-984
    • /
    • 1997
  • Test specimens of polymer-cement concrete composites were prepared using styrene-butadiene rubber(SBR) latex, ethylenevinyl acetate(EVA) and polyacrylic ester(PAE) emulsions as polymer dispersions in cement modified system at constant slump($10{\pm}0.5cm$), then compressive and flexural strengths water absorption, pore size distribution, and microstructures were investigated. Compressive and flexural strengths of these composites were remarkably improved with an increase of polymer-cement ratio. These composites had a desirable pore size distribution against frost damage due to a small capillary pore volume. Continuous polymer film was able to form in higher than 15% of polymer cement ratio.

  • PDF

A Study on the Ultraviolet Aging characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Y.S.;Lee, S.J.;Park, W.K.;Jeong, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1404-1406
    • /
    • 1998
  • The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged by various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation. high temperature and humidity as well as water spray. These the aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. the experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as $Al(OH)_3$ improves tracking resistance and the $TiO_2$ is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

The Effect of Synthetic Polymer Membranes on the Skin Permeation of Anti-AIDS Drugs (항에이즈 약물의 경피흡수에 미치는 합성고분자 멤브레인의 영향)

  • Lee, Kyung-Jin;Kim, Dae-Duk;Chien, Yie W.
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • The effect of synthetic polymer membranes on the permeation rate of dideoxynucleoside-type anti-HIV drugs through hairless rat skin was studied using ethylene/vinyl acetate copolymer (EVA) and ethylene/methyl acrylate copolymer (EMA) membranes fabricated by solvent casting method. In vitro skin permeation kinetics study of DDC (2',3'-dideoxythymidine), DDI (2',3'-dideoxyinosine) and AZT (3'-azido-3'-deoxythymidine) across the (membrane/skin) composite was conducted for 24 hours at $37^{\circ}C$ using the Valia-Chien skin permeation system. The results showed that skin permeation rate of each drug across the (skin/membrane) composite was mainly dependent on the property of the membrane. Proper selection of the polymeric membrane which resembles hydrophilicity/lipophilicity of the delivering drug was important in controlling the skin permeation rate.

  • PDF

The Scattering Property of EVA/SiO2 Composite Film Formed Micro-aggregation Structure for Roll-to-roll Process (Roll-to-roll 적용 가능한 마이크로 응집 구조를 갖는 EVA/SiO2 복합 필름의 산란 특성)

  • Jo, Kuk Hyun;Yang, Jun Yeong;Lee, Si Woo;Park, Eun Kyoung;Choi, Geun Seok;Song, Ki Won;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • We fabricated high transmission and high scattering poly(ethylene-co-vinyl acetate)(EVA) films embedding $SiO_2$ nanoparticles to improve outcoupling efficiency in organic display. The 800nm diameter $SiO_2$ nanoparticles aggregated and formed $1.56{\mu}m$ (with ${\pm}0.853{\mu}m$ standard deviation) diameter microparticles in EVA. The total transmission of scattering film was 83.3% on Polyethylene terephthalate(PET), which was higher than reference 82.8% PET substrate. The diffuse transmission and haze of the $SiO_2$ embedded EVA film were 76.1% and 91.4%, respectively. The optimized condition was 1:1 weight ratio of $SiO_2$ nanoparticles to EVA in Tetrahydrofuran(THF) solution. When the ratio of $SiO_2$ was larger than 1, the total transmission decreased by the increase in backscattering of light due to high scattering. With the optimized condition, we could succeed to fabricate a large scale film(35m in length) with a roll-to-roll process.

Peeling Behavior of Backsheet according to Surface Temperature of Photovoltaic Module (태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동)

  • Kim, Jeong-Hun;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.703-708
    • /
    • 2019
  • In this study, we investigate the relationship between the peeling behavior of the backsheet of a photovoltaic(PV) module and its surface temperature in order facilitate removal of the backsheet from the PV module. At low temperatures, the backsheet does not peel off whereas, at high temperatures, part of the backsheet remains on the surface of the PV module after the peeling process. The backsheet material remaining on the surface of the PV module is confirmed by X-ray diffraction(XRD) analysis to be poly-ethylene(PE). Differential scanning calorimetry(DSC) is also performed to investigate the interfacial characteristics of the layers of the PV module. In particular, DSC provides the melting temperature($T_m$) of laminated ethylene vinyl acetate(EVA) and of the backsheet on the PV module. It is found that the backsheet does not peel off below the $T_m$ of ethylene of EVA, while the PE layer of the backsheet remains on the surface of the PV module above the $T_m$ of the PE. Thus, the backsheet is best removed at a temperature between the $T_m$ of ethylene and that of PE layer.