Browse > Article
http://dx.doi.org/10.20909/kopast.2021.27.1.41

Preparation and Characterization of Antimicrobial Composite Film Containing Calcined Oyster Shell Powder  

Park, Kitae (Department of Packaging, Yonsei University)
Kambiz, Sadeghi (Department of Packaging, Yonsei University)
Seo, Jongchul (Department of Packaging, Yonsei University)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.27, no.1, 2021 , pp. 41-48 More about this Journal
Abstract
In this study, ethylene vinyl acetate (EVA) and low density polyethylene (LDPE) composite films (EVA/LDPE-OSP) containing calcined oyster shell powder (OSP) were prepared using twin-screw extruder as an antimicrobial packaging material. The OSP composite was initially prepared and then incorporated into an EVA/LDPE blend at different ratios (0, 1, 3 and 5%) to develop the EVA/LDPE-OSP composite films. The as-prepared EVA/LDPE-OSP composites films were evaluated using FT-IR, DSC, TGA, OTR, WVTR, SEM and UTM as well as antimicrobial activity was examined using JIS Z 2801:2000 standard. OPS endowed the antimicrobial potency to the composite films against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. In addition, the incorporation of OSP remarkably enhanced the thermal stability. OSP as a natural biocidal agent can be used as a multifunctional additive in packaging industry such as improving the thermomechanical properties and preventing the microbial contamination of packaged products.
Keywords
Calcined oyster shell powder; Antimicrobial composite film; Interaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shanky, B. 2013. Minimal processing and preservation of fruits and vegetables by active packaging. Int. J. Herb. Med, 1(2): 131-138.
2 Kumar, S., Boro, J. C., Ray, D., Mukherjee, A. and Dutta, J. 2019. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 5(6): e01867.   DOI
3 GilakHakimabadi, S., Ehsani, M., Khonakdar, H. A., Ghaffari, M. and Jafari, S. H. 2019. Controlled-release of ferulic acid from active packaging based on LDPE/EVA blend: Experimental and modeling. Food packag. Shelf Life, 22: 100392.   DOI
4 Khonakdar, H., Jafari, S., Yavari, A., Asadinezhad, A. and Wagenknecht, U. 2005. Rheology, morphology and estimation of interfacial tension of LDPE/EVA and HDPE/EVA blends. Polym. Bull, 54(1): 75-84.   DOI
5 Khonakdar, H., Wagenknecht, U., Jafari, S., Hassler, R. and Eslami, H. 2004. Dynamic mechanical properties and morphology of polyethylene/ethylene vinyl acetate copolymer blends. Adv. Polym. Technol, 23(4): 307-315.   DOI
6 Suppakul, P., Sonneveld, K., Bigger, S. W. and Miltz, J. 2011. Loss of AM additives from antimicrobial films during storage. J. Food. Eng, 105(2): 270-276.   DOI
7 Olyveira, G. M., Costa, L. M. M., da Carvalho, A. J. F., Basmaji, P. and Pessan, L. A. 2011. Novel LDPE/EVA nanocomposites with silver/titanium dioxide particles for biomedical applications. Mater. Sci. Eng. B. 1(4B): 516.
8 Mousavi, S., Aghili, A., Hashemi, S., Goudarzian, N., Bakhoda, Z. and Baseri, S. 2016. Improved morphology and properties of nanocomposites, linear low density polyethylene, ethyleneco-vinyl acetate and nano clay particles by electron beam. Polym. from Renew. Resour, 7(4): 135-153.   DOI
9 Lee, H., Park, D. and Woo, D. 2009. A Study on phsicochemical and calcination processed characteristic of oyster shell. JKAIS, 10(12): 3971-3976.
10 Park, K., Sadeghi, K., Thanakkasaranee, S., Park, Y. I., Park, J., Nam, K. H., Han, H. and Seo, J. 2021. Effects of calcination temperature on morphological and crystallographic properties of oyster shell as biocidal agent. Int. J. Appl. Ceram. Technol, 18(2): 302-311.   DOI
11 Wu, C.-S., Wu, D.-Y. and Wang, S.-S. 2020. Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites. Polym. Bull, 1-18.
12 Tsou, C.-H., Wu, C.-S., Hung, W.-S., De Guzman, M. R., Gao, C., Wang, R.-Y., Chen, J., Wan, N., Peng, Y.-J. and Suen, M.-C. 2019. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer, 160: 265-271.   DOI
13 Hamester, M. R. R., Balzer, P. S. and Becker, D. 2012. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater. Res, 15(2): 204-208.   DOI
14 Shah, A. U. R., Prabhakar, M., Wang, H. and Song, J. I. 2018. The influence of particle size and surface treatment of filler on the properties of oyster shell powder filled polypropylene composites. Polym. Compos, 39(7): 2420-2430.   DOI
15 Liu, C.-H., Lee, H.-T., Tsou, C.-H., Wang, C.-C., Gu, J.-H. and Suen, M.-C. 2020. Preparation and characterization of biodegradable polyurethane composites containing oyster shell powder. Polym. Bull, 77(6): 3325-3347.   DOI
16 Zhang, J., Hereid, J., Hagen, M., Bakirtzis, D., Delichatsios, M. A., Fina, A., Castrovinci, A., Camino, G., Samyn, F. and Bourbigot, S. 2009. Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Saf. J. 44(4): 504-513.   DOI
17 Dadfar, S. R., Ramazani, S. A. and Dadfar, S. A. 2009. Investigation of oxygen barrier properties of organoclay/HDPE/EVA nanocomposite films prepared using a two?step solution method. Polym. Compos, 30(6): 812-819.   DOI
18 Park, C. H., Kim, H. S. and Lee, Y. M. 2014. Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica. J. Membr. Sci, 24(4): 301-310.   DOI
19 Yang, X. L., Wang, H. Q., Lv, L., Yuan, S. L., Cai, J. and Zhou, L. Y. (2016). Preparation and Performance Research of New High Toughness EVA Material. Paper presented at the Mater. Sci. Fourm.
20 Ramirez-Hernandez, A., Aguilar-Flores, C. and Aparicio-Saguilan, A. 2019. Fingerprint analysis of FTIR spectra of polymers containing vinyl acetate. Dyna (Medellin), 86(209): 198-205.   DOI
21 Namduri, H. and Nasrazadani, S. 2008. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci, 50(9): 2493-2497.   DOI
22 Rujitanapanich, S., Kumpapan, P. and Wanjanoi, P. 2014. Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56: 112-117.   DOI
23 Haurie, L., Fernandez, A. I., Velasco, J. I., Chimenos, J. M., Cuesta, J.-M. L. and Espiell, F. 2007. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polym. Degrad. Stab, 92(6): 1082-1087.   DOI
24 Khonakdar, H. A. 2015. Dynamic mechanical analysis and thermal properties of LLDPE/EVA/modified silica nanocomposites. Compos. B. Eng, 76: 343-353.   DOI
25 Hong, X., Zheng, Y., Zhang, X. and Wu, X. 2020. Preparation of graphene intercalated magnesium silicate for enhancing the thermal stability and thermal conductivity of ethylen-evinyl acetate copolymer. Polymer. 193: 122332.   DOI
26 Moly, K., Radusch, H., Androsh, R., Bhagawan, S. and Thomas, S. 2005. Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking. Eur. Polym, J. 41(6): 1410-1419.   DOI
27 Zheng, J., Siegel, R. W. and Toney, C. G. 2003. Polymer crystalline structure and morphology changes in nylon?6/ZnO nanocomposites, J. Polym. Sci. B Polym. Phys. 41(10): 1033-1050.   DOI
28 Thanakkasaranee, S., Sadeghi, K., Lim, I.-J. and Seo, J. 2020. Effects of incorporating calcined corals as natural antimicrobial agent into active packaging system for milk storage. Mater. Sci. Eng. C. 111: 110781.   DOI
29 Shen, L. and Chen, Z. 2007. Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci, 62(14): 3748-3755.   DOI
30 Shi, L.-S., Wang, L.-Y. and Wang, Y.-N. 2006. The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis. Eur. Polym. J, 42(7): 1625-1633.   DOI
31 Lu, N., Lu, X., Jin, X. and Lu, C. 2007. Preparation and characterization of UV-curable ZnO/polymer nanocomposite films. Polym. Int, 56(1): 138-143.   DOI
32 Chen, Y. 2014. Investigations of environmental stress cracking resistance of HDPE/EVA and LDPE/EVA blends. J. Appl. Polym. Sci, 131(4).
33 Sawai, J. 2003. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods, 54(2): 177-182.   DOI
34 Sawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T. and Shimizu, M. 1996. Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Japan, 29(4): 627-633.   DOI
35 Jokar, M., Rahman, R. A., Ibrahim, N. A., Abdullah, L. C. and Tan, C. P. 2012. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioproc. Tech, 5(2): 719-728.   DOI
36 Menazea, A. and Awwad, N. S. 2020. Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J. Mater. Res. Technol, 9(4): 9434-9441.   DOI