• 제목/요약/키워드: ESI tandem mass spectrometry

검색결과 99건 처리시간 0.027초

체외에서 ESI-MS/MS 탐지에 연결된 HPLC에 의한 Entacapon의 수량화: 생물학적 동등성 연구에 적용 (Quantification of Entacapone in Human Plasma by HPLC Coupled to ESI-MS/MS Detection: Application to Bioequavalence Study)

  • Balasekhara Reddy., Ch.;Baburao., Ch.;Chandrasekhar., K.B.;Kanchanamala., K.;RihanaParveen., S.K.;Ravikumar., Konda
    • 대한화학회지
    • /
    • 제54권5호
    • /
    • pp.523-532
    • /
    • 2010
  • 제안된 방법은 국제표준(IS)인 Entacapone-d10(EAD10)을 사용하여 체외에서 Entacapon(EA)의 정량화를 위한 간단하고, 감도가 좋고, 명확한 액체 크로마토그래피-직렬 질량 분석법(LC-ESI-MS/MS)이다. 크로마토그래피 분리는 Zorbax SB-C18에서 수행되었고, $2.1{\times}50\;mm$, $5\;{\mu}m$ 컬럼과 10 mM Ammonium formate (pH 3.0)로 구성된 이동상에서 수행되었다: 0.7 mL/min 유속의 아세토나이트릴(60:40 v/v)은 액체-액체 추출을 따른다. EA와 EAD10은 다중 반응 탐색법(MRM)에서 수소부가물을 가지고 상대적으로 포지티브 모드인 m/z $306.1{\rightarrow}233.1$$316.3{\rightarrow}233.0$에서 수소부과물을 가지고 측정되었다. 그 방법은 상관계수($r^2$) 0.993 이상을 갖는 1.00 - 2000.00 ng/mL의 선형 농도 범위 이상으로 입증되었다. 하루 중과 하루 이내에 3.60에서 7.30과 4.20에서 5.50% 이내의 정밀성과 97.30에서 104.20과 98.30에서 105.80% 이내의 정확도는 EA를 위해 입증되었다. 이러한 방법은 건강한 인도인 자원자들의 생물학적 동등성 연구에서 성공적으로 적용되었다.

LC/ESI-MS/MS를 이용한 수질 환경 시료 중 산성의약물질 분석방법 비교 (Determination of acidic pharmaceuticals in aquatic environmental samples by LC/ESI-MS/MS)

  • 심영은;조현우;명승운
    • 분석과학
    • /
    • 제21권3호
    • /
    • pp.191-200
    • /
    • 2008
  • 의약물질(PPCPs)은 수질 환경 시료에서 새로운 오염물질로 대두되고 있다. 본 연구에서는 LC/ESI-MS/MS를 이용하여 환경 수질 시료로부터 7 종(2-퀴노사린카르복시산, 아세틸살리실산, 디클로페낙-소듐, 나프록센, 이부프로펜, 메페남산, 탈니플루메이트)의 산성의약물질을 동시 분석하는 방법을 비교하여 개선하였으며 폐수처리장의 유입수 및 방류수 그리고 연장선상의 하천수의 오염도를 측정하였다. LC/ESI-MS/MS 분석을 위해서 MCX (Mixed Cation eXchange) 카트리지와 HLB (Hydrophilic-Lipophilic Balance) 카트리지를 연결하는 텐뎀 고체상 추출법과 MCX 카트리지만을 사용하는 고체상 추출법을 이용하여 효과적인 시료 정제 및 추출을 수행하였다. 검출한계(LODs)와 방법검출한계(MDLs)는 각각 0.05~1.50 pg/mL, 0.17~4.90 pg/mL 범위를나타내었다. 시료중 1.0 ng/mL 농도(n=3)에서절대회수율은 81.9%~116.3%를 나타내었다. 수질 환경 시료에서 수 pg/mL~ng/mL의 농도로 산성의약물질이 측정되었다.

Simultaneous Determination and Occurrences of Pharmaceuticals by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) in Environmental Aqueous Samples

  • Koo, So-Hyun;Jo, Cheon-Ho;Shin, Sun-Kyoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1192-1198
    • /
    • 2010
  • Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the aquatic environment. Many pharmaceuticals are not completely removed during wastewater treatment, leading to their presence in wastewater treatment effluents, rivers, lakes, and ground water. Here, we developed analytical methods for monitoring ten pharmaceuticals from surface water by LC/ESI-MS/MS. For sample clean-up and extraction, MCX (mixed cation exchange) and HLB (hydrophilic-lipophilic balance) solid-phase extraction (SPE) cartridges were used. The limits of detection (LOD) in distilled water and the blank surface water were in the range of 0.006 - 0.65 and 1.66 - 45.05 pg/mL, respectively. The limits of quantitation (LOQ) for the distilled water and the blank surface water were in the range of 0.02 - 2.17 and 5.52 - 150.15 pg/mL, respectively. The absolute recoveries for fortified water samples were between 62.1% and 125.4%. Intra-day precision and accuracy for the blank surface water were 2.9% - 24.1% (R.S.D.) and -16.3% - 16.3% (bias), respectively. In surface wastewater near rivers, chlortetracycline and acetylsalicylic acid were detected frequently in the range of 0.017 - 5.404 and 0.029 - 0.269 ng/mL, respectively. Surface water near rivers had higher levels than surface water of domestic treatment plants.

Development and validation of a selective and sensitive LC-MS/MS method for determination of misoprostol acid in human plasma: Application to bioequivalence study

  • Park, Yong Sun;Kim, Keun Nam;Kim, Ye Na;Kim, Jung Hwan;Kim, Jin Young;Sim, Soo Ji;Lee, Heon Soo
    • 분석과학
    • /
    • 제28권1호
    • /
    • pp.17-25
    • /
    • 2015
  • A rapid, sensitive and specific method was developed and validated using electrospray ionization (ESI) tandem mass spectrometry (LC-MS/MS) for determination of misoprostol acid in human plasma. Misoprostol $acid-d_5$ was used as in internal standard (IS). The analyte and IS were extracted by simple one step solid phase extraction (SPE). Linearity in plasma was obtained over the concentration range 10~3000 pg/mL and lower limit of quantification (LLOQ) was identifiable and reproducible at 10 pg/mL. The intra- and inter-day precision values were below 9% and the accuracy was ranged from 93.81% to 102.02% at all four quality control samples. The method was has been successfully applied for routine assay to support pharmacokinetic study of misoprostol acid in human plasma after an oral administration of 0.4 mg misoprostol.

Hepatotoxic Effect of 1-Bromopropane and Its Conjugation with Glutathione in Male ICR Mice

  • Lee Sang Kyu;Jo Sang Wook;Jeon Tae Won;Jun In Hye;Jin Chun Hua;Kim Ghee Hwan;Lee Dong Ju;Kim Tae-Oh;Lee Eung-Seok;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1177-1182
    • /
    • 2005
  • The hepatotoxic effects of 1-bromopropane (1-BP) and its conjugation with glutathione were investigated in male ICR mice. A single dose (1000 mg/kg, po) of 1-BP in corn oil to mice significantly increased serum activities of alanine aminotransferase and aspartate aminotransferase. Glutathione (GSH) content was dose-dependently reduced in liver homogenates 12 h after 1-BP treatment. In addition, 1-BP treatment dose-dependently increased levels of S-pro-pyl GSH conjugate at 12 h after treatment, as measured by liquid chromatography-electro-spray ionization tandem mass spectrometry. The GSH conjugate was maximally increased in liver at 6 h after 1-BP treatment (1000 mg/kg), with a parallel depletion of hepatic GSH content. Finally, 1-BP induced the production of malondialdehyde in liver. The present results suggest that 1-BP might cause hepatotoxicity, including lipid peroxidation via the depletion of GSH, due to the formation of GSH conjugates in male ICR mice.

The Physiological Role of CPR1 in Saccharomyces cerevisiae KNU5377 against Menadione Stress by Proteomics

  • Kim, Il-Sup;Yun, Hae-Sun;Kwak, Sun-Hye;Jin, Ing-Nyol
    • Journal of Microbiology
    • /
    • 제45권4호
    • /
    • pp.326-332
    • /
    • 2007
  • In order to understand the functional role of CPRl in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wild- type strain of KNU5377. Among the proteins, Sodl1p Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the $cpr1{\Delta}$ mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the $cpr1{\Delta}$ mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.

Identification of Glutathione Conjugates of 2, 3-Dibromopropene in Male ICR Mice

  • Lee Sang Kyu;Baik Seo Yeon;Jeon Tae Won;Jun In Hye;Kim Ghee Hwan;Jin Chun Hua;Lee Dong Ju;Kim Jun Kyou;Yum Young Na;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • 제29권2호
    • /
    • pp.172-177
    • /
    • 2006
  • Hepatotoxic potential of 2, 3-dibromopropene (2, 3-DBPE) and its conjugation with glutathione (GSH) were investigated in male ICR mice. Treatment of mice with 20, 50, and 100 mg/kg of 2, 3-DBPE for 24 h caused elevation of serum alanine aminotransferase and aspartate aminotransferase activities. The hepatic content of GSH was not changed by 2, 3-DBPE. Meanwhile, the GSH content was slightly reduced when mice were treated with 2, 3-DBPE for 6 h and significantly increased 12 h after the treatment. Subsequently, a possible formation of GSH conjugate of 2, 3-DBPE was investigated in vivo. After the animals were treated orally with 20, 50, and 100 mg/kg of 2, 3-DBPE, the animals were subjected to necropsy 6, 12, and 24 h later. A conjugate of S-2-bromopropenyl GSH was identified in liver and serum treated with 100 mg/kg of 2, 3-DBPE by using liquid chromatography-electrospray ionization tandem mass spectrometry. The protonated molecular ions $[M+H]^+$ of S-2-bromopropenyl GSH were observed at m/z 425.9 and 428.1 in the positive ESI spectrum with a retention time of 6.35 and 6.39 min, respectively. In a time-course study in livers following an oral treatment of mice with 100 mg/kg of 2, 3-DBPE for 6, 12, and 24 h, the 2, 3-DBPE GSH conjugate was detected maximally 6 h after the treatment. The present results suggested that 2, 3-DBPE-induced hepatotoxicity might be related with the production of its GSH conjugate.

Identification of Cisplatin-Resistance Associated Genes through Proteomic Analysis of Human Ovarian Cancer Cells and a Cisplatin-resistant Subline

  • Zhou, Jing;Wei, Yue-Hua;Liao, Mei-Yan;Xiong, Yan;Li, Jie-Lan;Cai, Hong-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6435-6439
    • /
    • 2012
  • Chemoresistance to cancer therapy is a major obstacle to the effective treatment of human cancers with cisplatin (DDP), but the mechanisms of cisplatin-resistance are not clear. In this study, we established a cisplatin-resistant human ovarian cancer cell line (COC1/DDP) and identified differentially expressed proteins related to cisplatin resistance. The proteomic expression profiles in COC1 before and after DDP treatment were examined using 2-dimensional electrophoresis technology. Differentially expressed proteins were identified using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and high performance liquid chromatography-electrospray tandem MS (NanoUPLC-ESI-MS/MS). 5 protein spots, for cytokeratin 9, keratin 1, deoxyuridine triphosphatase (dUTPase), aarF domain containing kinase 4 (ADCK 4) and cofilin1, were identified to be significantly changed in COC1/DDP compared with its parental cells. The expression of these five proteins was further validated by quantitative PCR and Western blotting, confirming the results of proteomic analysis. Further research on these proteins may help to identify novel resistant biomarkers or reveal the mechanism of cisplatin-resistance in human ovarian cancers.

HPLC-MS/MS를 이용한 트리클로로에틸렌 대사산물의 다중 분석법 확립 (Multiple Determinations of Trichloroethylene Metabolites in a Concurrent Biological Media using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry)

  • 안영아;고영림;이승호;신미연;전중대;김성균
    • 한국환경보건학회지
    • /
    • 제40권2호
    • /
    • pp.114-126
    • /
    • 2014
  • Objectives: We aimed to develop a measurement method of five metabolites of trichloroethylene (TCE) in a concurrent biological sample, e.g., trichloroacetic acid (TCA), dichloroacetic acid (DCA), S-(1,2-dichlorovinyl) glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) and to validate the method before application to pharmacokinetic study. Methods: TCE metabolites were simultaneously analyzed using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) with as little as 50 ${\mu}L$ of serum and urine. DCA, TCA and NAcDCVC were extracted with diethyl ether, while DCVC and DCVG were extracted by solid phase extraction. This method was validated according to the guidelines for bioanalytical method validation of the Korean National Institute of Toxicological Research. Then, we determined the five metabolites in five strains of mice at 24 hr after exposure to 1 g TCE /kg body weight. Results: The limits of detection for the five metabolites in biological samples ranged from 0.001 to 0.076 nmol/mL, which is comparable to or better than those previously reported. Most calibration curves showed good linearity ($R^2=0.99$), and between-batch variation was less than 20% expressing acceptable robustness and reproducibility. Using this method, we found TCA and DCA were detected in all test mice at 24 hr after the oral administration while NAcDCVC and DCVC were detected in some strains, which showed strain-dependent metabolism of TCE. Conclusions: The present method could provide robust and accurate measurements of major key metabolites of TCE in biological media, which allowed concurrent analysis of TCE metabolism for limited amounts of biospecimens.

LC-MS/MS를 이용한 수산물 중 니트로빈의 정량분석법 개발 및 검증 (Determination of Nitrovin in Fishery Products by Liquid Chromatography-tandem Mass Spectrometry)

  • 김주혜;신다솜;강희승;정지윤;이규식
    • 한국식품위생안전성학회지
    • /
    • 제33권2호
    • /
    • pp.118-123
    • /
    • 2018
  • 본 연구에서는 우리나라 식품공전에서 불검출 물질로 관리하고 있는 니트로빈(nitrovin)에 대해 고감도 정량 정성분석이 가능한 LC-MS/MS를 적용하여 적합한 분석법을 제시하고자 하였다. 수산물 시료는 아세토니트릴/물로 추출하고 아세토니트릴 포화 헥산으로 지방을 제거하여 고상추출 카트리지를 적용하여 정제하였다. 분석물질은 전기분무이온화방법의 positive mode에서 이온화하여 MRM 조건을 확립하여 분석하였다. 개선된 시험법은 CODEX CAC/GL-71 가이드라인에 따라서 정확성, 정밀성, 직선성, 정량한계에 대한 검증을 통하여 유효성을 확인하였다. 본 실험에서의 정량한계는 0.001 mg/kg 수준이며, 정량한계를 포함하는 표준시료에서 얻어진 검량선의 상관계수($r^2$)는 0.985 이상으로 시험법의 직선성이 유효함을 판단할 수 있었다. 또한, 수산물(넙치, 장어 및 새우) 시료에 대한 니트로빈의 평균 회수율과 변동 계수는 72.1~122%, 2.9~16.9%로 확인되어 정확성 및 정밀성이 CODEX가이드라인에 부합하였다. 따라서, 개선된 니트로빈 정량분석법은 수산물 중 니트로빈을 분석하는데 적합하며, 니트로빈에 대한 지속적인 잔류실태조사에 활용되어 수산물 중 니트로빈의 안전관리에 기여할 것으로 판단된다.