Browse > Article

The Physiological Role of CPR1 in Saccharomyces cerevisiae KNU5377 against Menadione Stress by Proteomics  

Kim, Il-Sup (Department of Biology, Kyungpook National University)
Yun, Hae-Sun (Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health)
Kwak, Sun-Hye (Department of Microbiology, Kyungpook National University)
Jin, Ing-Nyol (Department of Microbiology, Kyungpook National University)
Publication Information
Journal of Microbiology / v.45, no.4, 2007 , pp. 326-332 More about this Journal
Abstract
In order to understand the functional role of CPRl in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wild- type strain of KNU5377. Among the proteins, Sodl1p Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the $cpr1{\Delta}$ mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the $cpr1{\Delta}$ mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.
Keywords
CPR1; oxidative stress; Saccharomyces cerevisiae KNU5377; proteome;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Dijck, P.V. and G.W. Walker. 2006. Physiological and molecular responses of yeasts to the environment, p. 111-152. In A. Querol and G.H. Fleet. (eds.), Yeasts in food and beverages, Springer Verlag, New York, USA
2 Galat, A. and S.M. Metcalfe. 1995. Peptidyl proline cis/trans isomerase. Prog. Biophys. Mol. Biol. 63, 67-118   DOI   ScienceOn
3 Kim, I.S., H.S. Yun, I.S. Park, H.Y. Sohn, H. Iwahashi, and I.N. Jin. 2006. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J. Biosci. Bioeng. 102, 288-296   DOI   ScienceOn
4 Piper, P.W., B. Curran, M.W. Davies, A. Lockheart, and G. Reid. 1986. Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat-shock. Eur. J. Biochem. 161, 525-531   DOI   ScienceOn
5 Rouhier, N. and J.P. Jacquot. 2005. The plant multigenic family of thiol peroxidase. Free Rad. Biol. Med. 38, 1413-1421   DOI   ScienceOn
6 Wang, P. and J. Heitman. 2005. The cyclophilins. Genome Biol. 6, 226.1-226.6   DOI
7 Ansari, H., G. Greco, and J. Luban. 2002. Cyclophilin A peptidylprolyl isomerase activity promotes Zpr1 nuclear export. Mol. Cell. Biol. 22, 6993-7003   DOI
8 Arevalo-Rodriguez, M., X. Wu, S.D. Hanes, and J. Heitman. 2004. Prolyl isomerase in yeast. Front. Biosci. 9, 2420-2446   DOI
9 Bona, E., F. Marsano, M. Cavaletto, and G. Berta. 2007. Proteomic characterization of copper stress response in Canabis sativa roots. Proteomics 7, 1121-1130   DOI   ScienceOn
10 Cardenas, M.E., E. Lim, and J. Heitman. 1995. Mutations that perturb cyclophilin A ligand binding pocket confer cyclosporin A resistance in Saccharromyces cerevisiae. J. Biol. Chem. 270, 20997-21002   DOI   ScienceOn
11 Davidson, J.F., B. Whyte, P.H. Bissinger, and R.H. Schiestl. 1996. Oxidative stress in involved in heat cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 5116-5121
12 Sykes, K., M. Gething, and J. Sambrook. 1993. Proline isomerases function during heat shock. Proc. Natl. Acad. Sci. USA 90, 5853-5857
13 Lushchak, V.I. and D.V. Gospodaryov. 2005. Catalase protects cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell. Biol. Int. 29, 187-192   DOI   ScienceOn
14 Moskvina, E., C. Schuller, C.T. Maurer, W.H. Mager, and H. Ruis. 1998. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 1041-1050   DOI   ScienceOn
15 Zanei, C.F., A.L. Maragno, A.P. Gregio, S. Komili, J.R. Pandolfi, C.A. Mestriner, W.R. Lustri, and S.R. Valentini. 2006. eIF5A binds to translational machinery components and affects translation in yeast. Biochem. Biophys. Res. Commun. 348, 1358-1366   DOI   ScienceOn
16 Tucker, C.L. and S. Fields. 2004. Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genom. 5, 216-224   DOI   ScienceOn
17 George, R., T. Beddoe, K. Landl, and T. Lithgow. 1998. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 95, 2296-2301
18 Reimann, B., J. Bradsher, J. Franke, F. Hartmann, M. Wiedmann, S. Prehn, and B. Wiedmann. 1999. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397-407   DOI   ScienceOn
19 Arevalo-Rodriguez, M., M.E. Cardenas, X. Wu, S.D. Hanes, and J. Heitman. 2000. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 hitone deacetlyase. EMBO J. 19, 3739-3749   DOI   ScienceOn
20 Arevalo-Rodriguez, M. and J. Heitman. 2005. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryotic Cell 4, 17-29   DOI   ScienceOn
21 Brown, C.R., D.Y. Cui, G.G.C. Hung, and H.L. Chiang. 2001. Cyclophilin A mediates Vid22p function in the import of fructose- 1,6-biphosphatase into vid vesicles. J. Biol. Chem. 276, 48017-48026   DOI
22 Delgado, M.L., J.E. O'Connor, I. Azorin, J. Renau-Piqueras, M.L. Gil, and D. AGozallo. 2001. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2, and TDH3 genes are also cell wall proteins. Microbiology 147, 411-417   DOI   PUBMED
23 Christian, G., L. Gilles, L. Jaekwon, J.M. Buhler, K. Sylvie, P. Michel, B. Helian, B.T. Michael, and L. Jean. 1998. The $H_2O_2$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489   DOI   ScienceOn
24 Lee, J., C. Godon, G. Langiel, D. Spector, J. Garin, J. Labarre, and M.B. Toledano. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040-16046   DOI
25 de Olivaria, I.M., J.A. Henriques, and D. Bonatto. 2007. In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochem. Biophys. Res. Commun. 355, 919-925   DOI   ScienceOn
26 Estrruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469-486   DOI