• Title/Summary/Keyword: EROSION

Search Result 3,026, Processing Time 0.036 seconds

A Study on High Temperature Particles-Erosion of Hard Coatings (경질 코팅의 고온 입자침식 현상 연구)

  • 이의열;김종하
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.4
    • /
    • pp.291-295
    • /
    • 2003
  • Many steam turbine components encounter solid particle erosion damage. It has been reported that particle erosion damage is caused by oxide scale exfoliation from boiler tubes. One of the most effective solutions to combat the erosion damage is the application of erosion resistant coatings on the turbine components. In this study, particle erosion resistance for various hard coatings such as nitride, Cr carbide and boride coatings was evaluated under the simulated erosion conditions of steam turbines. Based on the particle erosion tests, the boride coating was found to be more superior to others.

A Study on the Management Guidelines of Erosion Control Facilities in National Forests (I) - The Inspection Results of Erosion Control Facilities from 2009 to 2011 - (국유림 내 사방시설 관리방안에 관한 연구(I) - 2009~2011년 국유림 내 사방시설 점검 결과를 중심으로 -)

  • Lee, Sang-Ho;Jung, Cha-Sik;Kim, Jeong-Sig;Jung, Ho-Jin;Kim, Min-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.251-258
    • /
    • 2012
  • This study was conducted to analyze field inspection results of erosion control facilities within national forests and to suggest maintenance and management plan of erosion control facilities. The objects amounted to a total of 1,628 locations, comprising 308 erosion control dams and 1,320 erosion control areas (1,269.05 ha). The field inspections were conducted during March-June each year. The erosion control dams inspected were constructed during 1991-2005, with 96.4% of them, or 297 dams, constructed in or after 2000. The erosion control areas were constructed during 1986-2005, with 68.6% of them, or 903 areas, constructed in or after 2000. As for erosion control dams, there were 205 concrete erosion control dams and 68 concrete with boulder pitching erosion control dams, respectively, with 296 out of a total of 308 erosion control dams in a good condition. As for erosion control areas, there were many erosion control structures using stone masonry works and gabions, with 1,245 out of a total of 1,320 (94.3%) erosion control areas in a good condition. Overall, erosion control facilities within national forests were in a good condition, amply fulfilling their functions. As for erosion control facilities in a bad condition, they must be made to accomplish the goals of erosion control works through supplementation and repairs without fail. In addition, for the systematic maintenance and management of existing erosion control facilities and erosion control facilities constructed in the future as part of erosion control works, the construction of an erosion control facility management system is urgently needed.

Development and Application of Integrated System with SATEEC, nLS and USPED for Gully Erosion Evaluation (걸리 침식 평가를 위한 SATEEC, nLS, USPED 연계 시스템의 개발 및 적용)

  • Kang, Hyunwoo;Park, Youn Shik;Kim, Nam Won;Ok, Yong Sik;Jang, Won Seok;Ryu, Ji Chul;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.637-647
    • /
    • 2010
  • The Universal Soil Loss Equation (USLE)-based modeling systems have been widely used to simulate soil erosion studies. However the GIS-based USLE modeling systems have limitation in gully erosion evaluation which is one of the most important factor in soil erosion estimation. In this study, the integrated soil erosion evaluation system using with Sediment Assessment Tool for Effective Erosion Control (SATEEC) system, nLS and Unit Stream Power-based Erosion/Deposition (USPED) model was developed to simulate gully erosion. Gully head location using nLS model, USPED for gully erosion, and the SATEEC estimated sheet and rill erosion were evaluated and combined together with the integrated soil erosion evaluation system. This system was applied to the Haean-myeon watershed, annual average sediment-yield considering sheet, rill and gully erosion was simulated as 101,933 ton/year at the study watershed. if the integrated soil erosion evaluation system is calibrated and validated with the measured data, this system could be efficiently used in developing site-specific soil erosion best management system to reduce soil erosion and muddy water inflow into the receiving waterbody.

An overview of applicability of WEQ, RWEQ, and WEPS models for prediction of wind erosion in lands

  • Seo, Il Whan;Lim, Chul Soon;Yang, Jae Eui;Lee, Sang Pil;Lee, Dong Sung;Jung, Hyun Gyu;Lee, Kyo Suk;Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.381-394
    • /
    • 2020
  • Accelerated soil wind erosion still remains to date to cause severe economic and environmental impacts. Revised and updated models to quantitatively evaluate wind induced soil erosion have been made for specific factors in the wind erosion equation (WEQ) framework. Because of increasing quantities of accumulated data, the WEQ, the revised wind erosion equation (RWEQ), the wind erosion prediction system (WEPS), and other soil wind erosion models have been established. These soil wind erosion models provide essential knowledge about where and when wind erosion occurs although naturally, they are less accurate than the field-scale. The WEQ was a good empirical model for comparing the effects of various management practices on potential erosion before the RWEQ and the WEPS showed more realistic estimates of erosion using easily measured local soil and climatic variables as inputs. The significant relationship between the observed and predicted transport capacity and soil loss makes the RWEQ a suitable tool for a large scale prediction of the wind erosion potential. WEPS developed to replace the empirical WEQ can calculate soil loss on a daily basis, provide capability to handle nonuniform areas, and obtain predictions for specific areas of interest. However, the challenge of precisely estimating wind erosion at a specific regional scale still remains to date.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

Study on Erosion Cause Analysis and Implication (서해안 해수욕장의 침식원인 분석결과와 시사점)

  • Choi, Jung Hoon;Choi, Jin Yong;Cho, Young Kweon
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • In recent years, as environmental problems have become great concerns among many people, th loss of beach sand has become one of the highly controversial issue. Major reasons for the beach erosion within the cases of West Coast can be classified as: 1) erosion at Unyeo, Baeksajang beaches are caused by the wave refraction according to the large-scale sand dredging, 2) erosion at Kkotji, Baeksajang, and Unyeo beaches are caused by large-scale embankment construction and the coastal road construction, and 3) erosion at Chollipo and Hakampo beaches are caused by construction of small ports. Erosion in the west coast of Korea coast beach erosion control measures, include groin, zeotube, terraced stone, jetty groin, and beach nourishment. Erosion control measures initially installed to prevent erosion showed a positive effect. However, if there is no continuous source of sand, the effect of measures is fewness.

  • PDF

A Study on Erosion Properties of Hot Pressed Sialon Ceramics (열간가압소결법으로 제조된 Sialon세라믹스의 Erosion특성에 관한 연구)

  • 여인웅;임대순;박동수
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.42-47
    • /
    • 1997
  • Three kinds of the sialon ceramics with and without TiN additions were prepared by hot pressing to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens to study the effect of additives on the mechanical properties. A gas blast type erosion tester was employed to examine erosion behavior of the specimens up to $600^{\circ}C$. Erosion tests showed an increase of erosion rate up to 40$0^{\circ}C$ and a gradual decrease of erosion rate up to 50$0^{\circ}C$ for all kinds of sialon. The results also showed that erosion rates of the sialons were controlled better by microstructural factors than by mechanical properties including fracture toughness and hardness.

Analysis of soil erosion hazard zone using GIS

  • Kim J. H.;Kim K.T.;Park J. S.;Choi Y.S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.664-667
    • /
    • 2004
  • This paper is aimed at analyzing the soil erosion hazard zone in farm land. RUSLE was used for an analysis of soil erosion amount, and for the spatial data of basin, soil erosion amount was calculated by extracting the respect topography space related factors of RUSLE using DEM, Landuse, Soil map as base map. As a result of analysis on the calculated soil erosion amount according to land use type, it was analyzed that the most soil erosion occurred in orchard area, i.e., 40.08ton/ha/yr at average. It was classified into 5 classes depending on the calculated soil erosion amount. of which Class V was decided as soil erosion hazard zone, and for this area, 72.5ha or so, $2.4\%$ of the entire farm land was assessed as erosion hazard zone.

  • PDF

Effect of Transport Capacity Formula on Spatial Distribution of Soil Erosion

  • Nguyen, Van Linh;Yeon, Minho;Cho, Seongkeun;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.150-150
    • /
    • 2021
  • Soil erosion due to climate change is one of the global environmental issues. Especially, Korea is vulnerable to soil erosion as the frequency of extreme rainfall events and rainfall intensity are increasing. Soil erosion causes various problems such as reduced farmlands, deterioration of water quality in rivers, etc. To these severe problems, understanding the process of soil erosion is the first process. Then, it is necessary to quantify and analyze soil ersoion using an erosion model. Soil erosion models are divided into empirical, conceptual, and physics-based models according to the structures and characteristics of models. This study used GSSHA (Gridded Surface Subsurface Hydrologic Analysis), the physics-based erosion model, running on WMS (Watershed Modeling System) to analyze soil erosion vulnerability of the CheonCheon watershed. In addition, we compared the six sediment transport capacity formulas provided in the model and evaluated the equations fir on this study site. Therefore, this result can be as a primary tool for soil conservation management.

  • PDF