• Title/Summary/Keyword: ERK signaling pathway

Search Result 309, Processing Time 0.034 seconds

Hexane Fraction of Melandrium firmum Extract Induces Laminin-332 Expression in Human Keratinocyte (각질형성세포에서 왕불유행 헥산 분획물이 Laminin-332 발현에 미치는 효과)

  • Song, Hye Jin;Kim, Mi-Sun;Lee, Hong Gu;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.173-181
    • /
    • 2016
  • Skin basement membrane (BM) is a specialized structure that binds dermis and epidermis of the skin and plays an important role in maintaining skin structure. Structural change and destruction of BM is reported to appear due to UV exposure and aging, which may contribute to skin aging including wrinkle formation and a decrease in elasticity of the skin. One of the key components of the BM is laminin-332 (LN-332), and is a major contributor to epidermal-dermal attachment. In this study, we elucidated the effects of Meladrium firmum hexane fraction (MFHF) on LN-332 expression in HaCaT, a human keratinocyte cell line. Quantitative real-time PCR (RT-PCR) and immunoblot analysis revealed that MFHF induced upregulation of LN-332 gene and protein expression. Next, cells were treated with p38 MAPK inhibitor (SB202190) prior to MFHF treatment to analyze the signaling pathway contributing to LN-332 expression. The mRNA and protein levels of LN-332 expression were suppressed completely by pretreatment with p38 MAPK inhibitor. Furthermore, MFHF also increased the mRNA level of collagen type VII and integrin ${\alpha}6$ of skin BM component. These results collectively suggest that MFHF may have potential as an effective agent to stimulate the synthesis of BM components, and could be used to improve phenomenon of skin aging ascribed to the structural and functional impairments of BM in aged human skin.

Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway

  • Park, Wonjin;Baek, Yi-Yong;Kim, Joohwan;Jo, Dong Hyun;Choi, Seunghwan;Kim, Jin Hyoung;Kim, Taesam;Kim, Suji;Park, Minsik;Kim, Ji Yoon;Won, Moo-Ho;Ha, Kwon-Soo;Kim, Jeong Hun;Kwon, Young-Guen;Kim, Young-Myeong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.474-483
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, ${\beta}$-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.

Production of PMA-induced MMP-2 and MMP-9 in the HT-1080 Fibrosarcoma Cell Line is Inhibited by Corydalis heterocarpa via the MAPK-related Pathway (PMA로 자극된 HT-1080 세포에서 염주괴불주머니 추출물의 MAPK 경로를 통한 MMP-2, MMP-9 발현 억제 효과)

  • Yu, Ga Hyun;Karadeniz, Fatih;Oh, Jung Hwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2022
  • Matrix metalloproteinase (MMP) enzymes are responsible for the degradation and formation of the extracellular matrix (ECM), and overproduction of MMPs is observed in several diseases, such as cancer and asthma, that progress with metastatic characteristics. Natural products, especially phytochemicals, have been an important source of MMP inhibitors with reduced side effects. Although the majority of phytochemicals inhibit the enzymatic activity of MMPs, some suppress MMP production. In this context, the current study evaluated the potential of Corydalis heterocarpa, a halophyte with reported bioactivities, to inhibit MMP expression in PMA-stimulated HT-1080 cells. A crude C. heterocarpa extract was shown to decrease the mRNA and protein expression of MMP-2 and MMP-9 while increasing the endogenous MMP inhibitors TIMP-1 and TIMP-2 which regulate MMP expression in healthy tissues. In addition, our results show that the inhibitory effects of C. heterocarpa might occur through suppression of the phosphorylation of MAPK signaling, the upstream activator of MMP overexpression. In conclusion, C. heterocarpa is a potential source of antimetastatic compounds that might serve as lead molecules to develop novel MMP inhibitors.

Effect of Angelicae Gigantis Radix for Inflammatory Response in HaCaT Cells (당귀(當歸) 추출물이 피부 각질형성세포의 염증반응에 미치는 영향)

  • Huh, Jung;Park, Hoyeon;Kim, Eom Ji;Kim, Eun-Young;Sohn, Youngjoo;Jung, Hyuk-Sang
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.9-19
    • /
    • 2022
  • Objectives : Angelicae Gigantis Radix (AG) is a plant of the Ranunculus family. AG have been reported to have various pharmacological effects on human health which include uterine growth promotion, anti-inflammatory, analgesic, and immune enhancement. However, research on dermatitis disease is insufficient. Therefore, we investigated the effects of AG on tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) stimulated HaCaT cell. Methods : To investigate the effect of AG on HaCaT cell, HaCaT cells were pre-treated with AG for 1 hour and then stimulated with TNF-α/IFN-γ. After 24 hours, media and cells were harvested to analyze the inflammatory mediators. Concentration of human interleukin-1beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-α in the media were assessed by ELISA. mRNA expression of human thymus and activation-regulated chemokine (TARC), IL-6, and IL-8 were analyzed by RT-PCR. Additionally, the mechanisms of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway were investigated by Western blot. Results : The treatment of AG inhibited gene expression levels of IL-6, IL-8, and TARC and protein expression levels of IL-1β, MCP-1, and GM-CSF. Also, AG significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation and NF-κB translocation in TNF-α/IFN-γ stimulated HaCaT cell. Conclusions : Taken together, these results demonstrate that AG can alleviate inflammatory diseases such as atopic dermatitis by regulating the expression of inflammatory cytokines. Also, it suggest that AG may a promising candidate drug for the treatment of inflammatory disease such as atopic dermatitis.

The study of anti-inflammatory effect of Hyeonto-dan extract in RAW 264.7 macrophage (현토단(玄兎丹)의 RAW 264.7 대식 세포에서의 항염증 효과에 관한 연구)

  • Kim, Ma-Ryong;Kang, Ok-Hua;Kong, Ryong;Seo, Yun-Soo;Zhou, Tian;Kim, Sang-A;Kim, Eun-Su;Sin, Min-A;Lee, Young-Seob;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Objectives : This study aimed to investigate the unknown mechanisms behind the anti- inflammatory activity of Hyeonto-dan(HT) 70% ethanol extract on LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with Hyeonto-dan 1 h prior to addition of 200 ng/mL of LPS. Cell viability was measured by the MTS assay. Nitric oxide levels were determined by the Griess assay. $PGE_2$ were measured using EIA kit. Pro-inflammatory cytokine production was measured by the enzyme-linked immunosorbent assay (ELISA). The expression of COX-2, iNOS, and MAPKs was investigated by Western blot, qRT-PCR. $NF-{\kappa}B$/p65 localization and interaction of the TLR-4 receptor with LPS was examined by immunofluorescence assays. Results : Hyeonto-dan had no cytotoxicity at the measured concentration. Hyeonto-dan inhibited NO production and pro-inflammatory cytokines such as IL-6, $TNF-{\alpha}$, and PGE2 as well as the protein and mRNA expression of iNOS and COX-2. Moreover, Hyeonto-dan inhibited the interaction between LPS and TLR-4 in murine macrophages. It suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2), c-jun N-terminal kinase (JNK 1/2) and p38. Finally, it inhibited translocation of $NF-{\kappa}B$ in response to competitive LPS. Conclusions : Based on the results of this study, Hyeonto-dan inhibited the binding of TLR-4 receptor to LPS and inhibited the phosphorylation of extracellular signaling pathway MAPKs. These inhibitory effects are thought that the amount of $NF-{\kappa}B$ delivered to the nucleus was decreased and the inflammatory reaction was prevented by decreasing the production of LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

Inhibitory Effects of Tenebrio molitor Larvae Ethanol Extract on RANKL-Induced Osteoclast Differentiation (갈색거저리 유충 에탄올 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Seo, Minchul;Baek, Minhee;Lee, Hwa Jeong;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.983-989
    • /
    • 2020
  • The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is key to bone health. An imbalance between osteoclasts and osteoblasts leads to various bone-related disorders, such as osteoporosis, osteomalacia, and osteopetrosis. However, the bone-resorption inhibitor drugs that are currently used may cause side effects. Natural substances have recently received much attention as therapeutic drugs for the treatment of bone health. This study was designed to determine the effect of Tenebrio molitor larvae ethanol extract (TME) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. To measure the effect of TME on osteoclast differentiation, RAW264.7 cells were treated with RANKL with or without TME for 5 days. The tartrate-resistant acid phosphatase (TRAP) activity was significantly inhibited by treatment of TME without cytotoxicity up to 2 mg/ml. In addition, TME effectively suppressed expression of osteoclast differentiation-related marker genes and proteins such as TRAP, NFATc1, and c-Src. TME also significantly inhibited the p38 mitogen-activated protein kinase (MAPK) signaling pathway without affecting ERK and JNK signaling in RANKL-induced RAW264.7 cells. Consequently, we conclude that TME suppresses osteoclast differentiation by inhibiting RANKL-induced osteoclastogenic genes expression through the p38 MAPK signaling pathways. These results suggest that TME and its bioactive components are potential therapeutics for bone-related diseases such as osteoporosis.

Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells (K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자)

  • Yang Kwang Mo;Youn Seon-Min;Jeong Soo-Jin;Jang Ji-Yeon;Jo Wol-Soom;Do Chang-Ho;Yoo Y대-Jin;Shin Young-Cheol;Lee Hyung Sik;Hur Won Joo;Lim Young-Jin;Jeong Min-Ho
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2003
  • Purpose: The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A (HWA) coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosils on $p210^{bcr/abl}$ protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the Induction on a number of transcription factors and the differential gene expression in this model were investigated. Materials and Methids: K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 Mev Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with $0.25/muM$ of HMA and $25/muM$ of genistein, and the expressions and the activities of abl kinase, MAPK family, NF- kB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. Results: The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either in association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF- kB activity and the TK1 expression and activity. Conclusion: The effects of HMA and genistein on the radiosensitivity on the K562 cells were not related to the bcr-abl kinase activity in this study, another signaling pathway, besides the WAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the optional radiosensitization or radioprotection.

Correlation between Clinicopathology and Expression of HSP70, BAG1 and Raf-1 in Human Diffuse Type Gastric Carcinoma (미만형 위암에서 임상병리학적 인자와 Hsp70, BAG1과 Raf-1 발현간의 상관성)

  • Jung, Sang Bong;Lee, Hyoun Wook;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.101-108
    • /
    • 2016
  • The aim of this study was to evaluate the relationships between the expression of Heat shock protein70 (HSP70), Raf-1 and Bcl-2-associated athanogene-1 (BAG1) protein in diffuse type gastric carcinoma and examine association of HSP70, Raf-1 and BAG1 expression with various clinic-pathological factors and survival. Heat shock protein70 is induced in the cells in response to various stress conditions, including carcinogens. Overexpression of heat shock protein 70 has been observed in many types of cancer. The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK) signaling, and its aberrant activation has been implicated in multiple human cancers. Overexpression of BAG1 protein has been documented in some type of human cancer. BAG1 has been reported to interact with protein involved with a variety of signal pathway, and regulation of cell differentiation, survival and apoptosis. These interaction partners include HSP70 and Raf-1. The percentage of tumors exhibiting HSP70 positivity was significantly in cases of positive lymph node metastasis (64.9%) compared to cases without lymph node metastasis (35.1%, p=0.007). HS70 expression was correlated with pathological N-stage (p=0.006). Expression of BAG1 was detected in the majority of diffuse type gastric carcinoma tissues (71.7%), especially in younger patients (80% vs 52.6%, p=0.035). Furthermore BAG1 expression was correlated with tumor size (p=0.020). Raf-1 expression was found to be significantly associated with tumor size (p=0.005). The result indicate that HSP70 was significantly correlated the progression of diffuse type gastric cancer. Expression of BAG1 and Raf-1 may be used as diagnostic markers for gastric carcinoma.