• Title/Summary/Keyword: ER-stress

Search Result 355, Processing Time 0.04 seconds

Regulation of Endoplasmic Reticulum Stress Response by the Immobilization Stress (부동스트레스에 의한 소포체스트레스반응 조절)

  • Kwon, Ki-Sang;Kwon, Young-Sook;Kim, Seung-Whan;Kim, Dong-Woon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1132-1136
    • /
    • 2012
  • Many kind of cell stresses induce gene expression of unfolded protein response (UPR)-associated factors. This study demonstrated that up- and down-regulation of gene expression of endoplasmic reticulum (ER) stress chaperones and ER stress sensors was induced by immobilization stress in the rat organs (adrenal gland, liver, lung, muscle). However, no statistically significant regulation was detected in the others (heart, spleen, thymus, kidney, testis). The results are the first to show that immobilization stress induces UPR associated gene expression, will help to explain immobilization stress-associated ER stress.

Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells (Astrocyte 세포와 C6 glioma 세포에서 ER stress 유도 물질 brefeldin A에 의한 CHOP 단백질의 발현 차이)

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.490-495
    • /
    • 2016
  • Brefeldin A (BFA), a lactone antibiotic isolated from the fungus Eupenicillium brefeldianum, inhibits the transport of secreted and membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. BFA disrupts Golgi function, the accumulation of unfolded proteins in ER, and the induction of ER stress. Prolonged ER stress induces apoptosis at least in part through the transcription factor C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP),which is activated by the unfolded protein response (UPR). In this paper, we demonstrate that BFA-induced endoplasmic reticulum stress leads to different CHOP expression in primary astrocyte cells and C6 glioma cells. BFA induced lower CHOP expression levels in primary astrocyte cells than in C6 glioma cells; however, other ER stress inducers (thapsigargin and tunicamycin) resulted in similar expression patterns in these two cell types. Interestingly, the three different ER stress inducers (BFA, thapsigargin, and tunicamycin) induced similar levels of CHOP mRNA expression in primary astrocyte cells. The ubiquitin-proteasome inhibitor MG132 also markedly up-regulated the BFA-mediated CHOP protein expression in primary astrocyte cells. BFA also induced higher proteasome activity in primary astrocyte cells than in C6 glioma cells. Taken together, our results suggest that higher proteasomal activity might down-regulate BFA-induced CHOP expression in primary astrocyte cells.

ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells

  • Arduino, Daniela M.;Esteves, A. Raquel;Domingues, A. Filipa;Pereira, Claudia M.F.;Cardoso, Sandra M.;Oliveira, Catarina R.
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.719-724
    • /
    • 2009
  • Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

Inhibition of ER Stress by 2-Aminopurine Treatment Modulates Cardiomyopathy in a Murine Chronic Chagas Disease Model

  • Ayyappan, Janeesh Plakkal;lizardo, Kezia;Wang, Sean;Yurkow, Edward;Nagajyothi, Jyothi F
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.386-394
    • /
    • 2019
  • Trypanosoma cruzi infection results in debilitating cardiomyopathy, which is a major cause of mortality and morbidity in the endemic regions of Chagas disease (CD). The pathogenesis of Chagasic cardiomyopathy (CCM) has been intensely studied as a chronic inflammatory disease until recent observations reporting the role of cardio-metabolic dysfunctions. In particular, we demonstrated accumulation of lipid droplets and impaired cardiac lipid metabolism in the hearts of cardiomyopathic mice and patients, and their association with impaired mitochondrial functions and endoplasmic reticulum (ER) stress in CD mice. In the present study, we examined whether treating infected mice with an ER stress inhibitor can modify the pathogenesis of cardiomyopathy during chronic stages of infection. T. cruzi infected mice were treated with an ER stress inhibitor 2-Aminopurine (2AP) during the indeterminate stage and evaluated for cardiac pathophysiology during the subsequent chronic stage. Our study demonstrates that inhibition of ER stress improves cardiac pathology caused by T. cruzi infection by reducing ER stress and downstream signaling of phosphorylated eukaryotic initiation factor ($P-elF2{\alpha}$) in the hearts of chronically infected mice. Importantly, cardiac ultrasound imaging showed amelioration of ventricular enlargement, suggesting that inhibition of ER stress may be a valuable strategy to combat the progression of cardiomyopathy in Chagas patients.

Emodin exerts protective effect against palmitic acid-induced endoplasmic reticulum stress in HepG2 cells

  • Thomas, Shalom Sara;Park, Sora;Cha, Youn-Soo;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.176-184
    • /
    • 2019
  • Purpose: Protein overloading in the endoplasmic reticulum (ER) leads to endoplasmic reticulum stress, which exacerbates various disease conditions. Emodin, an anthraquinone compound, is known to have several health benefits. The effect of emodin against palmitic acid (PA) - induced ER stress in HepG2 cells was investigated. Methods: HepG2 cells were treated with varying concentrations of palmitic acid to determine the working concentration that induced ER stress. ER stress associated genes such as ATF4, XBP1s, CHOP and GRP78 were checked using RT- PCR. In addition, the expression levels of unfolded protein response (UPR) associated proteins such as $IRE1{\alpha}$, $eIF2{\alpha}$ and CHOP were checked using immunoblotting to confirm the induction of ER stress. The effect of emodin on ER stress was analyzed by treating HepG2 cells with $750{\mu}M$ palmitic acid and varying concentrations of emodin, then analyzing the expression of UPR associated genes. Results: It was evident from the mRNA and protein expression results that palmitic acid significantly increased the expression of UPR associated genes and thereby induced ER stress. Subsequent treatment with emodin reduced the mRNA expression of ATF4, GRP78, and XBP1s. Furthermore, the protein levels of $p-IRE1{\alpha}$, $p-eIF2{\alpha}$ and CHOP were also reduced by the treatment of emodin. Analysis of sirtuin mRNA expression showed that emodin increased the levels of SIRT4 and SIRT7, indicating a possible role in decreasing the expression of UPR-related genes. Conclusion: Altogether, the results suggest that emodin could exert a protective effect against fatty acid-induced ER stress and could be an agent for the management of various ER stress related diseases.

Effect of Endoplasmic Reticulum (ER) Stress Inhibitor Treatment during Parthenogenetic Activation on the Apoptosis and In Vitro Development of Parthenogenetic Porcine Embryos

  • Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.22 no.3
    • /
    • pp.235-244
    • /
    • 2018
  • We investigate the effect of endoplasmic reticulum (ER) stress inhibitor treatment during parthenogenetic activation of oocytes on the ER stress generation, apoptosis, and in vitro development of parthenogenetic porcine embryos. Porcine in vitro matured oocytes were activated by 1) electric stimulus (E) or 2) $E+10{\mu}M$ Ca-ionophore (A23187) treatment (EC). Oocytes were then treated by ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxychloic acid (TUDCA, $100{\mu}M$) for 3 h prior to in vitro culture. Parthenogenetic embryos were sampled to analyze ER stress and apoptosis at the 1-cell and blastocyst stages. The x-box binding protein 1 (Xbp1) mRNA and ER stress-associated genes were analyzed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. At the 1-cell stage, although no difference was observed in Xbp1 splicing among treatments, BiP transcription level in the E group was significantly reduced by salubrinal treatment, and GRP94 and ATF4 transcription levels in EC group were significantly reduced by all treatments (p<0.05) compared to control. In the EC group, both apoptotic genes were reduced by ER stress inhibitor treatments compared to control (p<0.05) except Caspase-3 gene by TUDCA treatment. These results suggest that the treatment of ER stress inhibitor during parthenogenetic activation can reduce ER stress, and thereby reduce apoptosis and promote in vitro development of porcine parthenogenetic embryos.

Effects of Endoplasmic Reticulum Stress Inhibitor Treatment during the Micromanipulation of Somatic Cell Nuclear Transfer in Porcine Oocytes

  • Park, Yeo-Reum;Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • We examined the effects of endoplasmic reticulum (ER) stress inhibitor treatment during the micromanipulation of porcine somatic cell nuclear transfer (SCNT) on the in vitro development of SCNT embryos. ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxycholic acid (TUDCA; $100{\mu}M$) were added to the micromanipulation medium and holding medium. The expression of X-box binding protein 1 (Xbp1), ER-stress-associated genes, and apoptotic genes in SCNT embryos was confirmed at the one-cell and blastocyst stages. Levels of Xbp1 splicing and expression of ER-stress-associated genes in SCNT embryos at the one-cell stage decreased significantly with TUDCA treatment (p<0.05). The expression of ER-stress-associated genes also decreased slightly with the addition of both salubrinal and TUDCA (Sal+TUD). The expression levels of caspase-3 and Bcl2-associated X protein (Bax) mRNA were also significantly lower in the TUDCA and Sal+TUD treatments (p<0.05). At the blastocyst stage, there were no differences in levels of Xbp1 splicing, and transcription of ER-stress-associated genes and apoptosis genes between control and treatment groups. However, the blastocyst formation rate (20.2%) and mean blastocyst cell number ($63.0{\pm}7.2$) were significantly higher (p<0.05) for embryos in the TUDCA treatment compared with those for control (12.6% and $41.7{\pm}3.1$, respectively). These results indicate that the addition of ER-stress inhibitors, especially TUDCA, during micromanipulation can inhibit cellular damage and enhance in vitro development of SCNT embryos by reducing stress levels in the ER.

SREBP-1c Ablation Protects Against ER Stress-induced Hepatic Steatosis by Preventing Impaired Fatty Acid Oxidation (지방산 산화 장애 제어를 통한 SREBP-1c 결핍의 소포체 스트레스 유발 비알콜성지방간 보호작용)

  • Lee, Young-Seung;Osborne, Timothy F.;Seo, Young-Kyo;Jeon, Tae-Il
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.796-805
    • /
    • 2021
  • Hepatic endoplasmic reticulum (ER) stress contributes to the development of steatosis and insulin resistance. The components of unfolded protein response (UPR) regulate lipid metabolism. Recent studies have reported an association between ER stress and aberrant cellular lipid control; moreover, research has confirmed the involvement of sterol regulatory element-binding proteins (SREBPs)-the central regulators of lipid metabolism-in the process. However, the exact role of SREBPs in controlling lipid metabolism during ER stress and its contribution to fatty liver disease remain unknown. Here, we show that SREBP-1c deficiency protects against ER stress-induced hepatic steatosis in mice by regulating UPR, inflammation, and fatty acid oxidation. SREBP-1c directly regulated inositol-requiring kinase 1α (IRE1α) expression and mediated ER stress-induced tumor necrosis factor-α activation, leading to a reduction in expression of peroxisome proliferator-activated receptor γ coactivator 1-α and subsequent impairment of fatty acid oxidation. However, the genetic ablation of SREBP-1c prevented these events, alleviating hepatic inflammation and steatosis. Although the mechanism by which SREBP-1c deficiency prevents ER stress-induced inflammatory signaling remains to be elucidated, alteration of the IRE1α signal in SREBP-1c-depleted Kupffer cells might be involved in the signaling. Overall, the results suggest that SREBP-1c plays a crucial role in the regulation of UPR and inflammation in ER stress-induced hepatic steatosis.

Durability Estimation for ER(Electro-Rheological) Fluids of Arabic Gum Components (아라빅 검 성분의 ER유체에 대한 내구성 평가)

  • Kim, O.S.;Park, W.C.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.61-66
    • /
    • 2001
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electric field, and this phase-change typically manifests itself as a many-order-of magnitude change in the rheological behavior. This paper presents experimental results on material properties for an ER fluids of arabic gum components subjected to electrical fatigues. As a first step, ER fluids are made of arabic gum 25% of particle weight-concentration. Following the construction of test mechanism for estimated durability of ER fluid, the dynamic yield stress, shear stress and current density of the ER fluids are experimentally distilled as a function of DC electric field. The durability estimation of operated ER fluids are distilled and compared with those of unused ER fluids. In addition, the surface roughness of the employed electrode for copper and aluminum are evaluated as a function of the number of the electric-field cycles.

  • PDF

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.