Browse > Article

Inhibition of ER Stress by 2-Aminopurine Treatment Modulates Cardiomyopathy in a Murine Chronic Chagas Disease Model  

Ayyappan, Janeesh Plakkal (Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School)
lizardo, Kezia (Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School)
Wang, Sean (Rutgers Molecular Imaging Center)
Yurkow, Edward (Rutgers Molecular Imaging Center)
Nagajyothi, Jyothi F (Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School)
Publication Information
Biomolecules & Therapeutics / v.27, no.4, 2019 , pp. 386-394 More about this Journal
Trypanosoma cruzi infection results in debilitating cardiomyopathy, which is a major cause of mortality and morbidity in the endemic regions of Chagas disease (CD). The pathogenesis of Chagasic cardiomyopathy (CCM) has been intensely studied as a chronic inflammatory disease until recent observations reporting the role of cardio-metabolic dysfunctions. In particular, we demonstrated accumulation of lipid droplets and impaired cardiac lipid metabolism in the hearts of cardiomyopathic mice and patients, and their association with impaired mitochondrial functions and endoplasmic reticulum (ER) stress in CD mice. In the present study, we examined whether treating infected mice with an ER stress inhibitor can modify the pathogenesis of cardiomyopathy during chronic stages of infection. T. cruzi infected mice were treated with an ER stress inhibitor 2-Aminopurine (2AP) during the indeterminate stage and evaluated for cardiac pathophysiology during the subsequent chronic stage. Our study demonstrates that inhibition of ER stress improves cardiac pathology caused by T. cruzi infection by reducing ER stress and downstream signaling of phosphorylated eukaryotic initiation factor ($P-elF2{\alpha}$) in the hearts of chronically infected mice. Importantly, cardiac ultrasound imaging showed amelioration of ventricular enlargement, suggesting that inhibition of ER stress may be a valuable strategy to combat the progression of cardiomyopathy in Chagas patients.
Chagas disease; Cardiomyopathy; Mitochondrial stress; Endoplasmic reticulum stress; 2-Aminopurine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Combs, T. P., Mukherjee, S., De Almeida, C. J., Jelicks, L. A., Schubert, W., Lin, Y., Jayabalan, D. S., Zhao, D., Braunstein, V. L., Landskroner-Eiger, S., Cordero, A., Factors, S. M., Weiss, L. M., Lisanti, M. P., Tanowitz, H. B. and Scherer, P. E. (2005) The adipocyte as an important target cell for Trypanosoma cruzi infection. J. Biol. Chem. 280, 24085-24094.   DOI
2 Fernandas, O., Santos, S. S., Cupolillo, E., Mendonça, B., Derre, R., Junqueira, A. C. V., Santos, L. C., Sturm, N. R., Naiff, R. D., Barret, T. V. and Campbell, D. A. (2001) A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. Trans. R. Soc. Trop. Med. Hyg. 95, 97-99.   DOI
3 Feng, C. Y. and Rise, M. L. (2010) Characterization and expression analyses of anti-apoptotic Bcl-2-like genes NR-13, Mcl-1, Bcl-X1 and Bcl-X2 in Atlantic cod (Gadus morhua). Mol. Immunol. 47, 763-784.   DOI
4 Gardner, B. M., Pincus, D., Gotthardt, K., Gallagher, C. M. and Walter, P. (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5, a013169.   DOI
5 Garg, N., Popov, V. L. and Papaconstantinou, J. (2003) Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochim. Biophys. Acta 1638, 106-120.   DOI
6 Gupta, S., Wen, J. J. and Garg, N. J. (2009) Oxidative stress in Chagas disease. Interdiscip. Perspect. Infect. Dis. 2009, 190354.
7 Han, J. and Kaufman, R. J. (2016) The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 57, 1329-1338.   DOI
8 Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H. and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897-904.   DOI
9 Jelicks, L. A. and Tanowitz, H. B. (2011) Advances in imaging of animal models of Chagas disease. Adv. Parasitol. 75, 193-208.   DOI
10 Jacquemyn, J., Cascalho, A. and Goodchild, R. E. (2017) The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep. 18, 1905-1921.   DOI
11 Jelicks, L. A., Chandra, M., Shtutin, V., Tang, B., Christ, G. J., Factor, S. M., Wittner, M., Huang, H., Douglas, S. A., Weiss, L. M., Orleans-Juste P. D., Shirani J. and Tanowitz H. B. (2002) Phosphoramid on treatment improves the consequences of chagasic heart disease in mice. Clin. Sci. (Lond.) 103, 267S-271S.   DOI
12 Lipskaia, L., Chemaly, E. R., Hadri, L., Lompre, A. M. and Hajjar, R. J. (2010) Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Expert Opin. Biol. Ther. 10, 29-41.   DOI
13 Johndrow, C., Nelson, R., Tanowitz, H., Weiss, L. M. and Nagajyothi, F. (2014) Trypanosoma cruzi infection results in an increase in intracellular cholesterol. Microbes Infect. 16, 337-344.   DOI
14 Kezia, L., Janeesh, P. A., Cui, M. H., Rashmi B., Jelicks, L. A. and Nagajyothi, F. (2018) High fat diet aggravates cardiomyopathy in murine chronic Chagas disease. Microbes Infect. 18, 1286-4579.
15 Li, X., Zhao, D., Guo, Z., Li, T., Qili, M., Xu, B., Qian, M., Liang, H., Xiaoqiang, E., Gitau, S. C., Wang, L., Huangfu, L., Wu, Q., Xu, C. and Shan, H. (2016) Overexpression of SerpinE2/protease nexin-1 contribute to pathological cardiac fibrosis via increasing collagen deposition. Sci. Rep. 6, 37635.   DOI
16 Machado, F. S., Jelicks, L. A., Kirchhoff, L. V., Shirani, J., Nagajyothi, F., Mukherjee, S., Nelson, R., Coyle, C. M., Spray, D. C., de Carvalho, A. C., Guan, F., Prado, C. M., Lisanti, M. P., Weiss, L. M. Montgomery, S. P. and Tanowitz, H. B. (2012) Chagas heart disease: report on recent developments. Cardiol. Rev. 20, 53-65.   DOI
17 Nunes, M. C. P., Dones, W., Morillo, C. A., Encina, J. J. and Ribeiro, A. L. (2013) Chagas disease: an overview of clinical and epidemiological aspects. J. Am. Coll. Cardiol. 62, 767-776.   DOI
18 Memorial, C. C. (2009) Chagas disease and its toll on the heart. Eur. Heart J. 30, 2063-2072.   DOI
19 Minning, T. A., Weatherly, D. B., Flibotte, S. and Tarleton, R. L. (2011) Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genomics 12, 139-150.   DOI
20 Nagajyothi, F., Weiss, L. M., Zhao, D., Koba, W., Jelicks, L. A., Cui, M. H., Factor, S. M., Scherer, P. E. and Tanowitz, H. B. (2014) High fat diet modulates Trypanosoma cruzi infection associated myocarditis. PLoS Negl. Trop. Dis. 8, e3118.   DOI
21 Quijano-Hernandez, I. and Dumonteil, E. (2011) Advances and challenges towards a vaccine against Chagas disease. Hum. Vaccin. 7, 1184-1191.   DOI
22 Rozpedek, W., Pytel, D., Mucha, B., Leszczynska, H., Diehl, J. A. and Majsterek, I. (2016) The role of the PERK/eIF2${\alpha}$/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med. 16, 533-544.   DOI
23 Soares, M. B. P., De Lima, R. S., Rocha, L. L., Vasconcelos, J. F., Rogatto, S. R., Dos Santos, R. R., Iacobas, S., Goldenberg, R. C., Iacobas, D. A., Tanowitz, H. B., de Carvalho, A. C. and Spray, D. C. (2010) Gene expression changes associated with myocarditis and fibrosis in hearts of mice with chronic chagasic cardiomyopathy. J. Infect. Dis. 202, 416-426.   DOI
24 Malhotra, J. D. and Kaufman, R. J. (2007) The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716-731.   DOI
25 Westphal, D., Dewson, G., Czabotar, P. E. and Kluck, R. M. (2011) Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813, 521-531.   DOI
26 Tanowitz, H. B., Kirchhoff, L. V., Simon, D., Morris, S. A., Weiss, L. M. and Wittner, M. (1992) Chagas' disease. Clin. Microbiol. Rev. 5, 400-419.   DOI
27 Tostes, S., Bertulucci, D., Pereira, G. and Rodrigues. V. (2005) Myocardiocyte apoptosis in heart failure in chronic Chagas' disease. Int. J. Cardiol. 99, 233-237.   DOI
28 Van Kerckhoven, R., Kalkman, E. A., Saxena, P. R. and Schoemaker, R. G. (2000) Altered cardiac collagen and associated changes in diastolic function of infarcted rat hearts. Cardiovasc. Res. 46, 316-323.   DOI
29 Volmer, R. and Ron, D. (2015) Lipid-dependent regulation of the unfolded protein response. Curr. Opin. Cell Biol. 33, 67-73.   DOI
30 Weber, G. F. and Menko, A. S. (2005) The canonical intrinsic mitochondrial death pathway has a non-apoptotic role in signaling lens cell differentiation. J. Biol. Chem. 280, 22135-22145.   DOI
31 Zhao, L. and Ackerman, S. L. (2006) Endoplasmic reticulum stress in health and disease. Curr. Opin. Cell Biol. 18, 444-452.   DOI
32 Zhou, L., Yang, D., Wu, D. F., Guo, Z. M., Okoro, E. and Yang, H. (2013) Inhibition of endoplasmic reticulum stress and atherosclerosis by 2-aminopurine in apolipoprotein e-deficient mice. ISRN Pharmacol. 2013, 847310.   DOI
33 Carpio, M. A., Michaud, M., Zhou, W., Fisher, J. K., Walensky, L. D. and Katz, S. G. (2015) BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc. Natl. Acad. Sci. U.S.A. 112, 7201-7206.   DOI
34 B'chir, W., Maurin, A. C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P. and Bruhat, A. (2013) The eIF2${\alpha}$/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683-7699.   DOI
35 Cao, S. S. and Kaufman, R. J. (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 21, 396-413.   DOI