• Title/Summary/Keyword: ER(electrorheological) Fluid

Search Result 87, Processing Time 0.024 seconds

Durability of Phosphorated Starch Based Electrorheological Fluids in Damper Application (인산화 전분 ER 유체의 댐퍼 내구 특성)

  • Lee, Chul-Hee;Jang, Min-Gyu;Sohn, Jung-Woo;Han, Young-Min;Choi, Seung-Bok
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.285-291
    • /
    • 2009
  • In this work, durability characteristics of electrorheological (ER) fluid for damper application are experimentally investigated. ER fluid is prepared by using phosphorated starch particles and silicone oil. The field-dependent Bingham characteristics and response time for the proposed ER fluids are experimentally obtained. Experimental apparatus of durability test for ER fluid is established with cylindrical ER cylinder for mid-sized passenger vehicle. In order to evaluate the durability characteristics of ER fluid as a function of time, damping force and temperature variations are measured until one million cycles. After durability test, Bingham characteristics and response time of ER fluid are measured and compared to the initial properties. Microscopic pictures of ER fluid are taken to validate the changes of properties. The results indicate that the ER fluid can be commercially utilized in vehicle damper system with its durability performance. Moreover, the understanding of durability characteristics is essential to predict the service life of ER fluid as well as to design its applications.

Experimental Investigation on the Flow Characteristics of ER Fluids II (2nd Report, Viscosity-Temperature Characteristics of Dispersive ER Fluids) (ER 유체의 유동특성에 관한 실험적 연구 II (분산계 ER 유체의 점도-온도 특성))

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.393-398
    • /
    • 1999
  • The temperature dependence of the viscosity was determined for an electrorheological(ER) fluid consisting of 35 weight% zeolite particles in hydraulic oil 46cSt. Thermal activation analysis were performed by changing the ER fluid's temperature from -1$0^{\circ}C$ to 5$0^{\circ}C$ at fixed electric field. According to the analysis, the activation energy for flow was about 79.64kJ/mole at E=0kV/mm. Generally, the hydraulic oil 46cSt will be operated at the temperature of about 4$0^{\circ}C$, the ER fluid's electric field dependence of viscosities were investigated at this temperature. also, the influence of adding the dispersant(Carbopl 940) on electrorheological effect of the ER fluid was discussed.

  • PDF

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc-Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.659-666
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological(ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.438-443
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological (ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

  • PDF

Parametric resonance of axisymmetric sandwich annular plate with ER core layer and constraining layer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.487-499
    • /
    • 2011
  • The parametric resonance problems of axisymmetric sandwich annular plate with an electrorheological (ER) fluid core and constraining layer are investigated. The annular plate is covered an electrorheological fluid core layer and a constraining layer to improve the stability of the system. The discrete layer annular finite element and the harmonic balance method are adopted to calculate the boundary of instability regions for the sandwich annular plate system. Besides, the rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be changed when applying an electric field. When the electric field is applied on the sandwich structure, the damping of the sandwich system is more effective. Thus, variations of the instability regions for the sandwich annular plate with different applying electric fields, thickness of ER layer, and some designed parameters are presented and discussed in this study. The ER fluid core is found to have a significant effect on the location of the boundaries of the instability regions.

A Study on the Surface Finishing Technique using Electrorheological Fluid

  • Park, Sung-Jun;Kim, Wook-Bae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • The electrorheological(ER) fluid has been used to the ultraprecision polishing of single crystal silicon as new polishing slurry whose properties such as yield stress and particle structure changed with the application of an electric field. In this work, it is aimed to find the effective parameters in the ER fluid on material removal in the polishing system whose structure is similar to that of the simple hydrodynamic bearing. The generated pressure in the gap between a moving wall and a workpiece, as well as the electric field-induced stress of the mixture of ER fluid-abrasives, is evaluated experimentally, and their influence on the polishing of single crystal silicon is analyzed. Moreover, the behavior of abrasive and ER particles is described.

Maneuver Analysis of Full-Vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1125-1130
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological (ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

  • PDF

Electrorheological Properties of ER Fluid under High Shear Flow (고속 전단유동에서 ER유체의 전기유변 특성)

  • Kim Y. C.;Kim K. W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.229-234
    • /
    • 2003
  • As electrorheological fluid(ER fluid) has a characteristic that apparent viscosity varies when electric field applied, so rheological characteristic(yield stress & viscosity) changes in proportion to the electric field applied and the response time is very short within a few miliseconds . In case of using ER fluid for journal bearing as lubricant, it is estimated that it's possible to realize very effective journal bearing system that is not complicate and has a very quick response time. It is necessary to examine the influence of rheological characteristic that varies with electric field applied on bearing characteristic to apply ER fluid to journal bearing, however there are few studies for about that. As for the journal bearing, it comes under high shear flow mode that has shear rate range of $10^3\~10^4s^{-1}$ because rotational speed is very high and clearance is small. But most of the studies for about ER fluid issued until now is about the range of $10\~10^2s^{-1}$. So, there are a lot of difficulties to understand the characteristic offish shear flow mode and furthermore it is restricted to make an experiment for about the characteristic of ER fluid because of the limitation of experimental equipment. The equipment was prepared to make an experiment lot high shear flow mode that has the range of $10^3\~10^4s^{-1}$ using ER fluid that is composed of silicon oil with dispersed particle of starch. Using the above system, the fluid characteristic of ER fluid was studied.

  • PDF

Force Feedback Control of 3 DOF Haptic Device Utilizing Electrorheological Fluid (ER 유체를 이용한 3 자유도 햅틱 장치의 힘 반향 제어)

  • Han, Y.M.;Kang, P.S.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.213-216
    • /
    • 2005
  • This paper presents force feedback control performance of a 3DOF haptic device that can be used for minimally invasive surgery (MIS). As a first step, a 3DOF electrorheological (ER) joint is designed using a spherical mechanism. And it is optimized based on the mathematical torque modeling. Subsequently, the master haptic device is manufactured by the spherical joint. In order to achieve desired force trajectories, model based compensation strategy is adopted for the ER master. Therefore, Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. A compensation strategy is then formulated through the model inversion to achieve desired force at the ER master. Tracking control performances for sinusoidal force trajectory are presented, and their tracking errors are evaluated.

  • PDF