• Title/Summary/Keyword: EPD(Etch pit density)

Search Result 10, Processing Time 0.023 seconds

Precise EPD Measurement of Single Crystal Sapphire Wafer

  • Lee, Yumin;Kim, Youngheon;Kim, Chang Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.223.1-223.1
    • /
    • 2013
  • Since sapphire single crystal is one of the materials that have excellent mechanical and optical properties, the single crystal is widely used in various fields, and the demand for the use of substrate of LED devices is increasing rapidly. However, crystal defects such as dislocations and stacking faults worsen the properties of the single crystal intensely. When sapphire wafer of single crystal is used as LED substrate, especially, crystal defects have a strong influence on the characteristics of a film deposited on the wafer. In such a case quantitative assessment of the defects is essential, and the evaluation technique is now becoming one of the most important factors in commercialization of sapphire wafer. Wet etching is comparatively easy and accurate method to estimate dislocation density of single crystal because etching reaction primarily takes place where dislocations reached crystal surface which are chemically weak points, and produces etch pit. In the present study, the formation behavior of etch pits and etching time dependence were studied systematically. Etch pit density(EPD) analysis using optical microscope was also conducted and measurement uncertainty of EPD was studied to confirm the reliability of the results. EPDs and measurement uncertainties for 4 inch sapphire wafers were analyzed in terms of 5 and 21 points EPD readings. EPDs and measurement uncertainties in terms of 5 points readings for 4 inch wafers were compared by 2 organizations. We found that the average EPD value in terms of 5 points readings for a 4 inch sapphire wafer may represent the EPD value of the wafer.

  • PDF

4H-SiC(0001) Epilayer Growth and Electrical Property of Schottky Diode (4H-SiC(0001) Epilayer 성장 및 쇼트키 다이오드의 전기적 특성)

  • Park, Chi-Kwon;Lee, Won-Jae;Nishino Shigehiro;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.344-349
    • /
    • 2006
  • A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. We aimed to systematically investigate the dependence of SiC epilayer quality and growth rate during the sublimation growth using the CST method on various process parameters such as the growth temperature and working pressure. The etched surface of a SiC epitaxial layer grown with low growth rate $(30{\mu}m/h)$ exhibited low etch pit density (EPD) of ${\sim}2000/cm^2$ and a low micropipe density (MPD) of $2/cm^2$. The etched surface of a SiC epitaxial layer grown with high growth rate (above $100{\mu}m/h$) contained a high EPD of ${\sim}3500/cm^2$ and a high MPD of ${\sim}500/cm^2$, which indicates that high growth rate aids the formation of dislocations and micropipes in the epitaxial layer. We also investigated the Schottky barrier diode (SBD) characteristics including a carrier density and depletion layer for Ni/SiC structure and finally proposed a MESFET device fabricated by using selective epilayer process.

Improvement of HgCdTe Qualities grown by MOVPE using MBE grown CdTe/Si as Substrate (MBE법으로 성장된 CdTe(211)/Si 기판을 이용한 MOVPE HgCdTe 박막의 특성 향상)

  • Kim, Jin-Sang;Suh, Sang-Hee;Sivananthan, S.
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.282-288
    • /
    • 2003
  • We report the growth of HgCdTe by metal organic vapor phase epitaxy (MOVPE), using (211)B CdTe/Si substrates grown by molecular beam epitaxy (MBE). The surface morphology of these films is very smooth with hillock free. The etch pit densities (EPD) and full widths at half maximum (FWHM) of x-ray rocking curves exhibited that the crystalline quality of HgCdTe epilayer on MBE grown CdTe/Si was improved compare to HgCdTe on GaAs substrate. The Hall parameters of undoped HgCdTe layers on CdTe/Si showed n-type behavior with carrier concentration of $8{\times}10^{14}/cm^3$ at 77K. But HgCdTe on GaAs showed p-type conductivity due to in corporation of p-type impurities during GaAs substrate preparation. It is thought that these results are applicable for large area HgCdTe forcal plane arrays of $1024{\times}1024$ format and beyound.

Single Crystal Growth of GaAs by Single Temperature Zone horizontal Bridgman(1-T HB) Method (단일 온도대역 수평 Bridgman(1-T HB) 법에 의한 GaAs 단결정 성장)

  • 오명환;주승기
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1996
  • The single crystal growth has been carried out with the newly designed 1-T HB(single temperature zone horizontal Bridgman) system for GaAs crystals of 2 inch diameter doped with Si, Zn or undoped. With this method, incidence probability of single crystallinity was shown to be 0.73. Lattice defects evaluated from EPD(etch pit density) measurement were in the range of 5,000-20,000/cm2, dependent upon the doping condition. For the undoped GaAs crystals, carrier concentrations from the Hall measurement were ∼1×1016/cm3 at the seed part, which were less than half the concentrations of double of triple temperature zone(2-T, 3-T) HB grown crystals. By the 1-T HB method, therefore, GaAs crystals can be grown successfully with better yield and higher purity.

  • PDF

사파이어 단결정 기판의 EPD 측정 및 신뢰성 연구

  • Lee, Yu-Min;Kim, Yeong-Heon;Ryu, Hyeon;Kim, Chang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.317-317
    • /
    • 2012
  • 사파이어는 우수한 광학적, 물리적, 화학적 특성을 가지고 있는 물질 중의 하나이며, 청색 발광특성을 나타내는 GaN와 격자상수, 열팽창 계수가 가장 유사할 뿐만 아니라 가격도 상대적으로 저렴하여 GaN 성장을 위한 기판으로 사용된다. 실제로 사파이어는 프로젝터와 전자파장치, 군사용 장비 등 다양한 분야에 응용되고 있으며, 발광 다이오드(LED)를 위한 기판으로 활용됨으로써 그 수요가 급격히 증가하고 있다. 그러나 사파이어 결정의 성장 중에 생길 수 있는 전위(dislocation)와 적층결함(stacking fault) 등의 결정 결함들은 결정 내에 존재하여 역학적, 전기적 성질에 큰 영향을 미칠 수 있다. 특히 사파이어가 청색 발광소자의 기판으로 사용되는 경우, 사파이어 기판 내부의 결정 결함은 증착되는 박막 특성에 영향을 미치게 된다. 따라서 사파이어의 보다 나은 응용을 위해서는 결함의 형성 메커니즘과 결정 결함의 평가기술 등에 대한 이해가 필요하고, 특히 결함의 정량적 평가 기술의 개발은 사파이어의 상용화에 중요한 핵심요소 중 하나이다. 결정 내 결함이 위치하는 부분은 분자나 원자간의 결합이 약하거나 높은 에너지 상태이므로, 결정의 표면을 적절한 산이나 염기 등을 이용하여 에칭하면 에칭반응은 결정의 전위 위치에 해당하는 부분부터 일어나 결정의 표면에 에치핏을 형성한다. 따라서 결정 표면에 나타나는 에치핏의 개수를 관찰하면 결정의 전위 밀도 파악이 비교적 간단하고, 에칭반응의 이러한 특징은 전위의 정량적 평가에 이용이 가능하다. 본 연구는 4인치 사파이어 조각기판을 수산화칼륨(KOH)으로 습식에칭 후 표면에 나타나는 에치핏의 형성거동과 이의 시간 및 온도 의존성에 관한 연구를 진행하였다. 또한 단결정의 전위밀도를 예측하기 위해 사파이어 조각시편의 단위면적당 에치핏의 개수를 파악하여 에치핏밀도(EPD, etch pid density)를 계산하였고, 값의 불확도(uncertainty)를 계산하여 전위밀도의 신뢰도를 평가하였다. 그 결과, 사파이어 조각시편의 에치핏밀도는 단위면적($cm^2$)당 약 ${\sim}10^2$개로 확인되었고, 이 값은 약 2%의 상대불확도를 가지는 것으로 나타났다.

  • PDF

A study on the growth and electrical-optical characteristics of undoped-InSe and Sn-doped Inse single crystals by vertical bridgman method (수직 Bridgman법에 의한 InSe 단결정의 성장 및 Sn 도핑에 따른 전기.광학적 특성에 관한 연구)

  • 정희준;송필근;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.481-484
    • /
    • 1999
  • The undoped-InSe and Sn-doped InSe single crystals were grown by vertical Bridgman method and their properties were invesigated. These crystals were obtained by lowering the quartz ampoule for growth in the furnace and growth rate at optimum condition is 0.4mm/hr. The orientations and the crystallinites of these crystals were identified by X-ray diffraction(XRD), double crystal rocking curve(DCRC) and etch-pit density(EPD) measurements. From the Raman spectrum at room temperature, TO, LO modes together with their overtones and combinations were observed. Optical properties were investigated by photoluminescence at 12K and direct band gap of these crystals obtained from optical absorption spectrum. Compared with undoped-lnSe, electrical properties of Sn-doped InSe were increased and the electrical conductivity type were n-type. But electrical properties along growth direction of crystals and radial direction of wafer showed nearly uniform distribution.

  • PDF

A study on the growth of undoped-lnSe single crystal by vertical Bridgman method and Zn diffusion in Sn-doped InSe (수직 Bridgman법에 의한 InSe 단결정의 성장 및 Sn이 첨가된 InSe에서 Zn의 확산에 잔한 연구)

  • 정회준;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.464-467
    • /
    • 1999
  • The undoped-InSe and Sn-doped InSe single crystals were grown by vertical Bridgman method and their properties were invesigated. The orientations and the crystallinites of these crystals were identified by X-ray diffraction(XRD), double crystal rocking curve(DCRC) and etch-pit density(EPD) measurements. From the Raman spectrum at room temperature, TO, LO modes and together with their overtones and combinations were observed. Optical properties were inves ated by PL at 12K and direct band gap of these crystals obtained from optical absorption spectrum. Compared with undo&-InSe, electrical properties of Sn-doped InSe were increased and the electrical conductivity type were n-type. But electrical properties along growth direction of crystals and radial direction of wafer showed nearly uniform distribution. The Zn diffusion mechanism in InSe could be explained by interstitial-substitutional and vacancy complex models and the activation energy of 1.15-3.01eV were needed for diffusion.fusion.

  • PDF

Defects analysis of RE : YAG (RE = Nd3+, Er3+) single crystal synthesized by Czochralski method (Czochralski법으로 성장된 RE : YAG(RE = Nd3+, Er3+) 단결정의 결함분석)

  • Park, Cheong Ho;Joo, Young Jun;Kim, Hye Young;Shim, Jang Bo;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • RE : YAG ($RE=Nd^{3+}$, $Er^{3+}$) single crystals are laser diodes and generally grown by Czochralski method with controlling the various growth parameter. Since the defects occurred by temperature gradient or the rotation speed of solid-liquid growth interface act as the decline of crystal optical property during the growth procedure, crystalline quality improvement via defects analysis is necessary. The etch pit density (EPD) analysis was used to confirm the surface defect of grown RE : YAG single crystal and to select the area of transmission electron microscopy (TEM) analysis. Defects in the specimen produced by tripod polishing method such as buckling, rod shaped, bend contours by internal stress, segregation and others were observed by using 200 kV TEM and 300 kV FE-TEM.

Microstructure analyses of aluminum nitride (AlN) using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) (투과전자현미경과 전자후방산란회절을 이용한 AlN의 미세구조 분석)

  • Joo, Young Jun;Park, Cheong Ho;Jeong, Joo Jin;Kang, Seung Min;Ryu, Gil Yeol;Kang, Sung;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.127-134
    • /
    • 2015
  • Aluminum nitride (AlN) single crystals have attracted much attention for a next-generation semiconductor application because of wide bandgap (6.2 eV), high thermal conductivity ($285W/m{\cdot}K$), high electrical resistivity (${\geq}10^{14}{\Omega}{\cdot}cm$), and high mechanical strength. The bulk AlN single crystals or thin film templates have been mainly grown by PVT (sublimation) method, flux method, solution growth method, and hydride vapor phase epitaxy (HVPE) method. Since AlN suffers difficulty in commercialization due to the defects that occur during single crystal growth, crystalline quality improvement via defects analyses is necessary. Etch pit density (EPD) analysis showed that the growth misorientations and the defects in the AlN surface exist. Transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) analyses were employed to investigate the overall crystalline quality and various kinds of defects. TEM studies show that the morphology of the AlN is clearly influenced by stacking fault, dislocation, second phase, etc. In addition EBSD analysis also showed that the zinc blende polymorph of AlN exists as a growth defects resulting in dislocation initiator.

Thickness optimization of the bulk GaN single crystal grown by HVPE processing variable control (HVPE 법에서의 공정변수 조절에 의한 bulk GaN 단결정의 두께 최적화)

  • Park, Jae Hwa;Lee, Hee Ae;Lee, Joo Hyung;Park, Cheol Woo;Lee, Jung Hun;Kang, Hyo Sang;Kang, Suk Hyun;Bang, Sin Young;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.89-93
    • /
    • 2017
  • GaN single crystals were grown by controlling of various processing parameters such as growing temperature, V/III ratio and growing rate. We optimized thickness of bulk GaN single crystal by analyzing defect of surface and inside of the GaN single crystal for application to high brightness and power device. 2-inch bulk GaN single crystals were grown by HVPE (hydride vapor phase epitaxy) on sapphire and their thickness was 0.3~7.0 mm. Crystal structure of the grown bulk GaN was analyzed by XRD (X-ray diffraction). The surface characteristics of the grown bulk GaN were observed by OM (optical microscope) and SEM (scanning electron microscopy) with measuring EPD (etch pits density) of the GaN crystals.