• Title/Summary/Keyword: EMI(electromagnetic interference) Shielding

Search Result 73, Processing Time 0.02 seconds

Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film (유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향)

  • Lim, Hyun-Su;Oh, Jung-Min;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

Detection of electromagnetic interference shielding effect of Hanji mixed with carbon nanotubes using nuclear magnetic resonance techniques

  • Byun, Young Seok;Chae, Shin Ae;Park, Geun Yeong;Lee, Haeseong;Han, Oc Hee
    • Carbon letters
    • /
    • v.27
    • /
    • pp.90-97
    • /
    • 2018
  • Electromagnetic interference (EMI) shielding is an important issue in modern daily life due to the increasing prevalence of electronic devices and their compact design. This study estimated EMI-shielding effect (EMI-SE) of small ($8-14{\times}17mm$) Hanji (Korean traditional paper) doped with carbon nanotubes (CNTs) and compared to Hanji without CNT using $^2H$ (92.1 MHz) and $^{23}Na$ (158.7 MHz) nuclear magnetic resonance (NMR) peak area data obtained from 1 M NaCl in $D_2O$ samples in capillary tubes that were wrapped in the Hanji samples. The simpler method of using the variation of reflected power and tuning frequency by inserting the sample into an NMR coil was also tested at 242.9, 158.7, and 92.1 MHz. Overall, EMI shielding was relatively more effective at the higher frequencies. Our results validated that NMR methods to be useful to evaluate EMI-SE, particularly for small, flexible shielding materials, and demonstrated that EMI shielding by absorption is dominant in Hanji mixed with CNT.

Electromagnetic Interference Shielding Effectiveness of Hybrid Conductive Fabrics (하이브리드 전도성 직조섬유의 전자파 차폐효과)

  • Han, Gil-Young;Kim, Ki-Yeol;Yun, Tae-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • This study investigated electromagnetic interference (EMI) shielding effectiveness (SE) of hybrid conductive fabrics. The coaxial transmission line method was used to measure the EMI Shielding effectiveness of the conductive fabrics. We designed and constructed a measuring system, consisting of a network analyzer and a device that serves as a sample holder and at the same time as a transmission medium of incident electromagnetic waves. The measurements of SE were carried out in a frequency range from 100 MHz to 2 GHz. The results of the EMI shielding experiments showed that the maximum electromagnetic shielding effectiveness (EMSE) values of sandwich type C/A/C (carbon fiber sheet/aluminum foil tape/carbon fiber sheet) and C/Ni/C (carbon fiber sheet/magnetic shielding foil/carbon fiber sheet) samples were 55 dB and 113 dB, respectively, at a frequency of 1.9 GHz.

Electromagnetic Interference Shielding Effect of Fiber Reinforced Composites with Stainless Fiber Conductive Filler (스테인레스 섬유를 충전제로 사용한 섬유강화 복합재료의 전자파 차폐 효과)

  • Han, Gil-Young;Song, Dong-Han;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.71-78
    • /
    • 2010
  • The objective of this research is to investigate the influence of material characteristic and design on to the electromagnetic interference (EMI) shielding characteristics. Basalt glass fiber reinforced composite specimens with stainless fiber conductive filler were manufactured to perform the electromagnetic interference shielding effectiveness(SE) experiments. In order to reflection and absorb the specimen in electromagnetic fields, flanged coaxial transmission line sample holder was fabricated according to ASTM D 4935-89. Electromagnetic shielding effectiveness(EMSE) was measured quantitatively to examine the electromagnetic shielding characteristics of designed specimens. The result of EMI shielding experiments showed that maximum EMSE value of sandwich type specimens with GSG(basalt glass fiber/stainless fiber/basalt glass fiber) and SGS(stainless fiber/basalt glass fiber/stainless fiber) were 65dB and 80dB at a frequency of 1,500MHz, respectively.

Compliance Technologies of Electromagnetic Compatibility in Automotive Electronic Systems (전장 시스템의 전자파 적합성 대응 기술)

  • Shin, Youngsan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.506-509
    • /
    • 2018
  • Recently, number of components and operation frequency rapidly increase in automotive systems. This often leads to EMI (electromagnetic interference) where automotive systems suffer from malfunctions induced by electromagnetic wave. This paper surveys various EMC (electromagnetic compatibility) compliance technologies such as EMI filter, EMI shielding materials, and spread spectrum clock generator. Their pros and cons are also explained.

EMI Shielding Efficiency of Recycled plastic/Hybrid Conductive filer Composites filled Electro Arc furnace Slag (제강Slag 충진 폐플라스틱/복합 전도성 filler복합재료의 전자파 차폐 효과)

  • Kang Young-Goo;Song Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.80-85
    • /
    • 2004
  • Electromagnetic interference(EMI) shielding characteristics of composite filled with Cu flake and carbon brush powder as hybrid conductive filler and EAF slag have been studied. The coaxial transmission line method of ASTM D4935-99 was used to measure the EMI Shielding effectiveness of composites as formulation in frequency rage $100\~1,000MHz$ The SE also increases with the increase in flier loading. The hybrid filler filled composites show higher SE compared to that of only Cu flake. The correlation between SE and conductivity of the various composites is also discussed. The results indicate that the composites having higher filler loading$({\geq}40wt.\%)$ can be used for the purpose of safety materials to protect hazardous electromagnetic interference.

Electromagnetic Interference Shielding Effectiveness of Fiber Reinforced Composites Hybrid Conductive Filler (하이브리드 전도성 Filler 섬유강화 복합재료의 전자파 차폐효과)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The main objective of this study was to investigate fiber reinforced composite materials (FRCM) with electromagnetic shielding characteristics using aluminum (Al) film and copper (Cu) meshes. This study investigated the electromagnetic interference (EMI) shielding effectiveness (SE) of fiber reinforced composites filled with Al film, Cu meshes, and nano carbon black as hybrid conductive fillers to provide the electromagnetic shielding property of the fiber reinforced composites. The coaxial transmission line method of ASTM D 4935-89 was used to measure the EMI shielding effectiveness of composites in the frequency range of 300 MHz to 1.5 GHz. The variations of SE of FRCM with Al film, fine Cu, and general Cu meshes are described. The results indicate that the FRCM having Al film exhibited up to 75 dB of SE at 1.5 GHz.

Shielding Effectiveness of Electromagnetic Interference in ABS/Nickel Coated Carbon Fiber and Epoxy/Cu-Ni Fabric Nano Carbon Black Composites (ABS/Nickel 코팅 탄소섬유와 Epoxy/Copper-Nickel 직조 섬유 복합재료의 전자파차폐 효과)

  • Han, Gil-Young;Jung, Woo-Chul;Yang, In-Young;Sun, Hyang-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2012
  • Electromagnetic interference(EMI) shielding effectiveness(SE) was investigated in of woven fabric made of epoxy/copper-nickel fabrics and nickel coated carbon fiber reinforced acrylonitrile-butadiene-styrene(ABS) composites. The coaxial transmission line method was used to measure the EMI shielding effectiveness of the composites. We designed and constructed a measuring system, consisting of a network analyzer and a device that plays the serves as a sample holder and at the same time as a transmission medium of the incident electromagnetic wave. The measurement of SE were carried out frequency range from 100MHz to 2GHz. It is observed that the SE of the composits is the frequency dependent increase with the increase in nickel coated carbon fibre volume fraction. The nickel coating with 20wt% ABS composite was shown to exhibit up to 60dB of SE. The result that nickel coated carbon fibre ABS composite can be used for the purpose of EMI shielding as well as for some microwave applications.

Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding (전자파 차폐용 하이브리드 탄소나노물질)

  • Lee, Si-Hwa;Oh, Il-Kwon
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.138-144
    • /
    • 2016
  • Recently, electromagnetic interference (EMI) shielding materials have been extensively developed and significantly considered to protect electronic systems from harmful electromagnetic waves. Although, metal-based materials show high electrical conductivity and EMI shielding effectiveness, they have several challenging problems such as high density and corrosion. Carbon-based materials have been acclaimed as alternative EMI materials due to light weight, high mechanical properties, resistance to corrosion and excellent electrical conductivity. Here, we introduce 1-phase and 2-phase carbon materials as well as 3-phase hybrid carbon materials. The 3-phase hybrid carbon materials composed of metal nanoparticles, carbon nanotubes and graphene can be used as a promising EMI shielding material.

Electromagnetic Interference Shielding Properties of CO2 Activated Carbon Black Filled Polymer Coating Materials

  • Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.298-302
    • /
    • 2008
  • Carbon blacks could be used as the filler for the electromagnetic interference (EMI) shielding. The poly vinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) were used as the matrix for the carbon black fillers. Porous carbon blacks were prepared by $CO_2$ activation. The activation was performed by treating the carbon blacks in $CO_2$ to different degrees of burnoff. During the activation, the enlargement of pore diameters, and development of microporous and mesoporous structures were introduced in the carbon blacks, resulting in an increase of extremely large specific surface areas. The porosity of carbon blacks was an increasing function of the degree of burn-off. The surface area increased from $80\;m^2/g$ to $1142\;m^2/g$ and the total pore volume increased from $0.14073\;cc{\cdot}g^{-1}$ to $0.9343\;cc{\cdot}g^{-1}$. Also, the C=O functional group characterized by aldehydes, ketones, carboxylic acids and esters was enhanced during the activation process. The EMI shielding effectiveness (SE) of raw N330 carbon blacks filled with PVA was about 1 dB and those of the activated carbon blacks increased to the values between 6 and 9 dB. The EMI SE of raw N330 carbon blacks filled with PVDF was about 7 dB and the EMI SE increased to the range from 11 to 15 dB by the activation.