Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.1.021

Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film  

Lim, Hyun-Su (School of Advanced Materials Engineering, Jeonbuk Naional University)
Oh, Jung-Min (School of Advanced Materials Engineering, Jeonbuk Naional University)
Kim, Jong-Woong (School of Advanced Materials Engineering, Jeonbuk Naional University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.1, 2021 , pp. 21-29 More about this Journal
Abstract
Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.
Keywords
Electromagnetic interference (EMI); Flexible; Transparent; 2D materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Liu, Z. Liu, H. B. Zhang, W. Chen,Z. Zhao, Q. W. Wang, and Z. Z. Yu, "Ultrastrong and Highly Conductive MXene-Based Films for High-Performance Electromagnetic Interference Shielding", Adv. Electron. Mater, 6(1), 1901094 (2020).   DOI
2 M. Han, C. E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C. M. Koo, G. Friedman, and Y. Gogotsi, "Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding", ACS Nano, 14(4), 5008-5016 (2020).   DOI
3 M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati, C. B. Hatter, B. D. Allen, B. Anasori, I. T. Ozbolat, Y. Gogotsi, and M. C. Demirel, "Inkjet Printing of Self-Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli-Responsive Electromagnetic Shielding", Adv. Funct. Mater, 28(32), 1801972 (2018).   DOI
4 S. Zhao, L. Li, H. B. Zhang, B. Qian, J. Q. Luo, Z. Deng, S. Shi, T. P. Russell, and Z. Z. Yu, "Janus MXene Nanosheets for Macroscopic Assemblies", Mater. Chem. Front, 4, 910-917 (2020).   DOI
5 J. B. Park, H. Rho, A. N. Cha, H. J. Bae, S. H. Lee, S. W. Ryu, T. Jeong, and J. S. Han, "Transparent carbon nanotube web structures with Ni-Pd nanoparticles for electromagnetic interference (EMI) shielding of advanced display devices", Appl. Surf. Sci., 516(30), 145745 (2020).   DOI
6 V. Tran, D. Nguyen, A. T. Nguyen, M. Hofmann, Y. Hsieh, H. Kan, and C. Hsu, "Electromagnetic Interference Shielding by Transparent Graphene/Nickel Mesh Films", ACS Appl. Nano Mater, 3(8), 7474-7481 (2020).   DOI
7 D. G. Kim, J. H. Choi, D. K. Choi, and S. W. Kim, "Highly Bendable and Durable Transparent Electromagnetic Interference Shielding Film Prepared by Wet Sintering of Silver Nanowires", ACS Appl. Mater. Interfaces, 10(35), 29730-29740 (2018).   DOI
8 W. Chen, L. Liu, H. Zhang, and Z. Yu. "Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding". ACS Nano, 14(12), 16643-16653 (2020).   DOI
9 B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, J. Ma, J. Ma, C. Liu, and C. Shen. "Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance", ACS Appl. Mater. Interfaces, 12(36), 40859-40869 (2020).   DOI
10 P. Rani, B. Ahamed, and K. Deshmukh "Electromagnetic interference shielding properties of graphene quantum-dots reinforced poly(vinyl alcohol)/polypyrrole blend nanocomposites", Appl.Polym.Sci, 137(45), 49392 (2020).   DOI
11 L. Jia, D. Yan, X. Liu, R. Ma, H. Wu, and Z. Li, "Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film", ACS Appl. Mater. Interfaces, 10(14), 11941-11949 (2018).   DOI
12 Sudo, T. Sasaki, H. Masuda, N. Drewniak, and J. L, "Electromagnetic interference (EMI) of system-on-package (SOP)", IEEE Trans. Adv. Packag. 27(2), 304-314 (2004).   DOI
13 B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, and J. Yuan, "Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures", Adv. Mater, 26(21), 3484-3489 (2014).   DOI
14 J. M. Kang, D. G. Kim, Y. S. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, "High-performance Near-field Electromagnetic Wave Attenuation in Ultra-thin and Transparent Graphene Films", 2D Mater, 4(2), 025003 (2017).   DOI
15 J. Chen, and C. T. Liu, "Technology Advances in Flexible Displays and Substrates", IEEE Access, 1, 150-158 (2013).   DOI
16 F. Kargar, Z. Barani, M. Balinskiy, A. S. Magana, J. S. Lewis, and A. A. Balandin, "Dual-Functional Graphene Composites for Electromagnetic Shielding and Thermal Management", Adv. Electron. Mater, 5(1), 1800558 (2019).   DOI
17 B. Shen, W. Zhai, and W. Zheng, "Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding", Adv. Funct. Mater, 24(28), 4542-4548 (2014).   DOI
18 D. Yi, B. Shen, X. Wei, L. Tong, Y. Xu, J. Li, S. Xu, Y. Zhang, W. Zheng, and Y. Yang, "Subwavelength Periodic Shielding Materials: Toward Enhanced Shielding of the Incomplete Enclosure", IEEE Micro. Wirel. Co, 29(2), 113-115 (2019).   DOI
19 Y. Khan, A. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, "Monitoring of Vital Signs with Flexible and Wearable Medical Devices", Adv. Mater, 28(22), 4373-4395 (2016).   DOI
20 E. Torres Alonso, G. Karkera, G. F. Jones, M. F. Craciun, and S. Russo, "Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes", ACS Appl. Mater. Interfaces, 8(26), 16541-16545 (2016).   DOI
21 Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei, and Z. Ji, "High-Performance and Rapid-Response Electrical Heaters Based on Ultraflexible, Heat-Resistant, and Mechanically Strong Aramid Nanofiber/Ag Nanowire Nanocomposite Papers", ACS Nano, 13(7), 7578-7590 (2019).   DOI
22 O. Pitkanen, J. Tolvanen, I. Szenti, A. Kukovecz, J. Hannu, H. Jantunen, and K. Kordas, "Lightweight Hierarchical Carbon Nanocomposites with Highly Efficient and Tunable Electromagnetic Interference Shielding Properties", ACS Appl. Mater. Interfaces, 11(21), 19331-19338 (2019).   DOI
23 Y. Yang, S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Ju, H. Chang, L. Xiao, H. Xu, and Y. Liu. "Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding", ACS Nano, 14(7), 8754-8765 (2020).   DOI
24 H. Wang, C. Ji, C. Zhang, Y. Zhang, Z. Zhang, Z. Lu, J. Tan, and L. Jay Guo, "Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures", ACS Appl. Mater. Interfaces, 11(12), 11782-11791 (2019).   DOI
25 L. Xu, X. Zhang, C. Cui, P. Ren, D. Yan, and Z. Li, "Enhanced Mechanical Performance of Segregated Carbon Nanotube/Poly(lactic acid) Composite for Efficient Electromagnetic Interference Shielding", Ind. Eng. Chem. Res., 58(11), 4454-4461 (2019).   DOI
26 Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, and J. Gu, "Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber-Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding", ACS Nano, 14(7), 8368-8382 (2020).   DOI
27 S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, "Electromagnetic Interference Shielding Effectiveness of Monolayer Graphene", Nanotechnology, 23(45), 455704 (2012).   DOI
28 E. Hosseini, M. Arjmand, U. Sundararaj, and K. Karan, "Filler-Free Conducting Polymers as a New Class of Transparent Electromagnetic Interference Shields", ACS Appl. Mater. Interfaces, 12(25), 28596-28606 (2020).   DOI
29 C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu, J. Li, T. Tian, W. Liu, and W. Song, "Record-High Transparent Electromagnetic Interference Shielding Achieved by Simultaneous Microwave Fabry-Perot Interference and Optical Antireflection", ACS Appl. Mater. Interfaces, 12(23), 26659-26669 (2020).   DOI
30 Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang, W. Wei, Y. Peng, F. Yuan, H. Dong, X. Hou, and Z. Wu, "Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding", ACS Appl. Mater. Interfaces, 12(2), 2826-2834 (2020).   DOI
31 S. H. Kim, J. S. Oh, M. G. Kim, W. J. Jang, M. Wang, Y. G. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, and Y. K. Lee, "Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (RGO) Interleaved Structure Fabricated by Electrophoretic Deposition", ACS Appl. Mater. Interfaces, 6(20), 17647-17653 (2014).   DOI
32 H. G. Kim, H. K. Rho, A. Cha, M. J. Lee, and J. S. Ha, "CNTNi-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices", J. Microelectron. packag. Soc., 27(2), 39-44 (2020).   DOI
33 G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, and A. D. Taylor, "Layer-By-Layer Assembly of Cross-Functional Semi-Transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding", Adv. Funct. Mater, 28(44), 1803360 (2018).   DOI
34 Y. B. Shin, Y. H. Ju, and J. W. Kim, "Technical Trends of Metal Nanowire-Based Electrode", J. Microelectron. Packag. Soc., 26(4), 15-22 (2019).
35 D. G. Kim, J. H. Choi, D. K. Choi, and S. W. Kim. "Highly Bendable and Durable Transparent Electromagnetic Interference Shielding Film Prepared by Wet Sintering of Silver Nanowires", ACS Applied Materials & Interfaces, 10(35), 29730-29740 (2018).   DOI