DOI QR코드

DOI QR Code

Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film

유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향

  • Lim, Hyun-Su (School of Advanced Materials Engineering, Jeonbuk Naional University) ;
  • Oh, Jung-Min (School of Advanced Materials Engineering, Jeonbuk Naional University) ;
  • Kim, Jong-Woong (School of Advanced Materials Engineering, Jeonbuk Naional University)
  • 임현수 (전북대학교 신소재공학부) ;
  • 오정민 (전북대학교 신소재공학부) ;
  • 김종웅 (전북대학교 신소재공학부)
  • Received : 2021.03.08
  • Accepted : 2021.03.30
  • Published : 2021.03.30

Abstract

Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

Keywords

References

  1. Sudo, T. Sasaki, H. Masuda, N. Drewniak, and J. L, "Electromagnetic interference (EMI) of system-on-package (SOP)", IEEE Trans. Adv. Packag. 27(2), 304-314 (2004). https://doi.org/10.1109/TADVP.2004.828817
  2. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, and J. Yuan, "Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures", Adv. Mater, 26(21), 3484-3489 (2014). https://doi.org/10.1002/adma.201400108
  3. J. M. Kang, D. G. Kim, Y. S. Kim, J. B. Choi, B. H. Hong, and S. W. Kim, "High-performance Near-field Electromagnetic Wave Attenuation in Ultra-thin and Transparent Graphene Films", 2D Mater, 4(2), 025003 (2017). https://doi.org/10.1088/2053-1583/aa533c
  4. L. Jia, D. Yan, X. Liu, R. Ma, H. Wu, and Z. Li, "Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film", ACS Appl. Mater. Interfaces, 10(14), 11941-11949 (2018). https://doi.org/10.1021/acsami.8b00492
  5. F. Kargar, Z. Barani, M. Balinskiy, A. S. Magana, J. S. Lewis, and A. A. Balandin, "Dual-Functional Graphene Composites for Electromagnetic Shielding and Thermal Management", Adv. Electron. Mater, 5(1), 1800558 (2019). https://doi.org/10.1002/aelm.201800558
  6. B. Shen, W. Zhai, and W. Zheng, "Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding", Adv. Funct. Mater, 24(28), 4542-4548 (2014). https://doi.org/10.1002/adfm.201400079
  7. D. Yi, B. Shen, X. Wei, L. Tong, Y. Xu, J. Li, S. Xu, Y. Zhang, W. Zheng, and Y. Yang, "Subwavelength Periodic Shielding Materials: Toward Enhanced Shielding of the Incomplete Enclosure", IEEE Micro. Wirel. Co, 29(2), 113-115 (2019). https://doi.org/10.1109/LMWC.2018.2886958
  8. J. Chen, and C. T. Liu, "Technology Advances in Flexible Displays and Substrates", IEEE Access, 1, 150-158 (2013). https://doi.org/10.1109/ACCESS.2013.2260792
  9. Y. Khan, A. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, "Monitoring of Vital Signs with Flexible and Wearable Medical Devices", Adv. Mater, 28(22), 4373-4395 (2016). https://doi.org/10.1002/adma.201504366
  10. E. Torres Alonso, G. Karkera, G. F. Jones, M. F. Craciun, and S. Russo, "Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes", ACS Appl. Mater. Interfaces, 8(26), 16541-16545 (2016). https://doi.org/10.1021/acsami.6b04042
  11. Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei, and Z. Ji, "High-Performance and Rapid-Response Electrical Heaters Based on Ultraflexible, Heat-Resistant, and Mechanically Strong Aramid Nanofiber/Ag Nanowire Nanocomposite Papers", ACS Nano, 13(7), 7578-7590 (2019). https://doi.org/10.1021/acsnano.9b00434
  12. O. Pitkanen, J. Tolvanen, I. Szenti, A. Kukovecz, J. Hannu, H. Jantunen, and K. Kordas, "Lightweight Hierarchical Carbon Nanocomposites with Highly Efficient and Tunable Electromagnetic Interference Shielding Properties", ACS Appl. Mater. Interfaces, 11(21), 19331-19338 (2019). https://doi.org/10.1021/acsami.9b02309
  13. H. Wang, C. Ji, C. Zhang, Y. Zhang, Z. Zhang, Z. Lu, J. Tan, and L. Jay Guo, "Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures", ACS Appl. Mater. Interfaces, 11(12), 11782-11791 (2019). https://doi.org/10.1021/acsami.9b00716
  14. L. Xu, X. Zhang, C. Cui, P. Ren, D. Yan, and Z. Li, "Enhanced Mechanical Performance of Segregated Carbon Nanotube/Poly(lactic acid) Composite for Efficient Electromagnetic Interference Shielding", Ind. Eng. Chem. Res., 58(11), 4454-4461 (2019). https://doi.org/10.1021/acs.iecr.8b05764
  15. Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, and J. Gu, "Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber-Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding", ACS Nano, 14(7), 8368-8382 (2020). https://doi.org/10.1021/acsnano.0c02401
  16. Y. Yang, S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Ju, H. Chang, L. Xiao, H. Xu, and Y. Liu. "Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding", ACS Nano, 14(7), 8754-8765 (2020). https://doi.org/10.1021/acsnano.0c03337
  17. E. Hosseini, M. Arjmand, U. Sundararaj, and K. Karan, "Filler-Free Conducting Polymers as a New Class of Transparent Electromagnetic Interference Shields", ACS Appl. Mater. Interfaces, 12(25), 28596-28606 (2020). https://doi.org/10.1021/acsami.0c03544
  18. C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu, J. Li, T. Tian, W. Liu, and W. Song, "Record-High Transparent Electromagnetic Interference Shielding Achieved by Simultaneous Microwave Fabry-Perot Interference and Optical Antireflection", ACS Appl. Mater. Interfaces, 12(23), 26659-26669 (2020). https://doi.org/10.1021/acsami.0c05334
  19. Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang, W. Wei, Y. Peng, F. Yuan, H. Dong, X. Hou, and Z. Wu, "Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding", ACS Appl. Mater. Interfaces, 12(2), 2826-2834 (2020). https://doi.org/10.1021/acsami.9b17513
  20. S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, "Electromagnetic Interference Shielding Effectiveness of Monolayer Graphene", Nanotechnology, 23(45), 455704 (2012). https://doi.org/10.1088/0957-4484/23/45/455704
  21. S. H. Kim, J. S. Oh, M. G. Kim, W. J. Jang, M. Wang, Y. G. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, and Y. K. Lee, "Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (RGO) Interleaved Structure Fabricated by Electrophoretic Deposition", ACS Appl. Mater. Interfaces, 6(20), 17647-17653 (2014). https://doi.org/10.1021/am503893v
  22. H. G. Kim, H. K. Rho, A. Cha, M. J. Lee, and J. S. Ha, "CNTNi-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices", J. Microelectron. packag. Soc., 27(2), 39-44 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.039
  23. G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, and A. D. Taylor, "Layer-By-Layer Assembly of Cross-Functional Semi-Transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding", Adv. Funct. Mater, 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
  24. D. G. Kim, J. H. Choi, D. K. Choi, and S. W. Kim. "Highly Bendable and Durable Transparent Electromagnetic Interference Shielding Film Prepared by Wet Sintering of Silver Nanowires", ACS Applied Materials & Interfaces, 10(35), 29730-29740 (2018). https://doi.org/10.1021/acsami.8b07054
  25. Y. B. Shin, Y. H. Ju, and J. W. Kim, "Technical Trends of Metal Nanowire-Based Electrode", J. Microelectron. Packag. Soc., 26(4), 15-22 (2019).
  26. J. Liu, Z. Liu, H. B. Zhang, W. Chen,Z. Zhao, Q. W. Wang, and Z. Z. Yu, "Ultrastrong and Highly Conductive MXene-Based Films for High-Performance Electromagnetic Interference Shielding", Adv. Electron. Mater, 6(1), 1901094 (2020). https://doi.org/10.1002/aelm.201901094
  27. M. Han, C. E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C. M. Koo, G. Friedman, and Y. Gogotsi, "Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding", ACS Nano, 14(4), 5008-5016 (2020). https://doi.org/10.1021/acsnano.0c01312
  28. M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati, C. B. Hatter, B. D. Allen, B. Anasori, I. T. Ozbolat, Y. Gogotsi, and M. C. Demirel, "Inkjet Printing of Self-Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli-Responsive Electromagnetic Shielding", Adv. Funct. Mater, 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
  29. S. Zhao, L. Li, H. B. Zhang, B. Qian, J. Q. Luo, Z. Deng, S. Shi, T. P. Russell, and Z. Z. Yu, "Janus MXene Nanosheets for Macroscopic Assemblies", Mater. Chem. Front, 4, 910-917 (2020). https://doi.org/10.1039/c9qm00681h
  30. J. B. Park, H. Rho, A. N. Cha, H. J. Bae, S. H. Lee, S. W. Ryu, T. Jeong, and J. S. Han, "Transparent carbon nanotube web structures with Ni-Pd nanoparticles for electromagnetic interference (EMI) shielding of advanced display devices", Appl. Surf. Sci., 516(30), 145745 (2020). https://doi.org/10.1016/j.apsusc.2020.145745
  31. V. Tran, D. Nguyen, A. T. Nguyen, M. Hofmann, Y. Hsieh, H. Kan, and C. Hsu, "Electromagnetic Interference Shielding by Transparent Graphene/Nickel Mesh Films", ACS Appl. Nano Mater, 3(8), 7474-7481 (2020). https://doi.org/10.1021/acsanm.0c01076
  32. D. G. Kim, J. H. Choi, D. K. Choi, and S. W. Kim, "Highly Bendable and Durable Transparent Electromagnetic Interference Shielding Film Prepared by Wet Sintering of Silver Nanowires", ACS Appl. Mater. Interfaces, 10(35), 29730-29740 (2018). https://doi.org/10.1021/acsami.8b07054
  33. W. Chen, L. Liu, H. Zhang, and Z. Yu. "Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding". ACS Nano, 14(12), 16643-16653 (2020). https://doi.org/10.1021/acsnano.0c01635
  34. B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, J. Ma, J. Ma, C. Liu, and C. Shen. "Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance", ACS Appl. Mater. Interfaces, 12(36), 40859-40869 (2020). https://doi.org/10.1021/acsami.0c09020
  35. P. Rani, B. Ahamed, and K. Deshmukh "Electromagnetic interference shielding properties of graphene quantum-dots reinforced poly(vinyl alcohol)/polypyrrole blend nanocomposites", Appl.Polym.Sci, 137(45), 49392 (2020). https://doi.org/10.1002/app.49392