Journal of the Korean Data and Information Science Society
/
v.13
no.2
/
pp.167-174
/
2002
In the case of "nonignorable missing data", it is necessary to assume a model dealing with the missing on each situations. In this article, for example, we sometimes meet situations where data set are income amounts in a survey of individuals and assume a model as the values are the larger, a missing data probability is the higher. The method is to maximize using the EM(Expectation and Maximization) algorithm based on the (missing data) mechanism that creates missing data of the case of exponential distribution. The method started from any initial values, and converged in a few iterations. We changed the missing data probability and the artificial data size to show the estimated accuracy. Then we discuss the properties of estimates.
Journal of Korea Society of Industrial Information Systems
/
v.7
no.3
/
pp.9-14
/
2002
In this paper we propose a method for performance enhancement of speech recognizer under noisy conditions. The parallel combination model which is presented at the PMC method using multiple Gaussian-distributed mixtures have been adapted to the variation of each mixture. The CDHMM(continuous observation density HMM) which has multiple Gaussian distributed mixtures are combined by the proposed PMC method. Also, the EM(expectation maximization) algorithm is used for adapting the model mean parameter in order to reduce the variation of the mixture density. The result of simulation, the proposed PMC adaptation method show better performance than the conventional PMC method.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2006.04a
/
pp.243-248
/
2006
In this paper, we propose the unsupervised change detection algorithm that apply the similarity measure techniques to the hyperspectral image. The general similarity measures including euclidean distance and spectral angle were compared. The spectral similarity scale algorithm for reducing the problems of those techniques was studied and tested with Hyperion data. The thresholds for detecting the change area were estimated through EM(Expectation-Maximization) algorithm. The experimental result shows that the similarity measure techniques and EM algorithm can be applied effectively for the unsupervised change detection of the hyperspectral data.
Proceedings of the Korean Operations and Management Science Society Conference
/
2005.05a
/
pp.678-685
/
2005
Estimating parameters of the lifetime distribution is investigated when field failure data are not completely reported. To take into account the reality and the accuracy of the estimates in such a case, the failure reporting probability is incorporated in estimating parameters. Firstly, method of maximum likelihood estimate(MLE) is used to estimate parameters of the lifetime distribution when failure reporting probability is known. Secondly, Expectation and Maximization(EM) algorithm is used to estimate the failure reporting probability and parameters of the lifetime distribution simultaneously when failure reporting probability is unknown. For both case, procedures of estimation are illustrated for single Weibull distribution and mixed Weibull distribution. Simulation results show that MLE obtained by the proposed method is more accurate than the conventional MLE.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.8A
/
pp.1156-1162
/
1999
In this paper, the problem of decoding transmitted data sequence with diversity reception in the presence of nondelective fading is studied. The expection maximizaton (EM) algorithm is employed to derive an interactive algorithm. The algorithm performs block-by-block coherent decoding with the aid of pilot symbols. It is shown that the complexity of the algorithm grows linearly as a function of sequence length. The performance of the algorithm is shown to better than that of the conventional pilot symbol aided (PSI) algorithm. Simulation results are presented to assess the performance of the algorithm and the results are compared with that of the conventional PSI alforithm.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.26
no.2
/
pp.151-157
/
2013
In this paper, properties of pattern using LBG (Linde-Buzo-Gray) Algorithm was explored including the exactness of K-means algorithm and process time of EM (Expectation Maximization) algorithm in order to develop analysis algorithm of partial discharge pattern in a cable using acoustic data analysis system. Partial discharge was measured by generating inner fault due to lamination of XLPE which is used for cable insulation material. Discharge pattern was analysed by changing the number of swarm article to 2, 4, and 6 in order to interpret swarm structure and properties.
This research proposes comprehensive models for analyzing common cause failures (CCF) due to cumulative shocks and to assess system reliability under the CCF. The proposed cumulative shock models are based on the binomial failure rate (BFR) model. Six kinds of models are proposed so as to explain diverse cumulative shock phenomena. The models are composed of the initial failure probability, shape parameter, and the total shock number. Some parameters of the proposed models can not be explicitly estimated, so we adopt the Expectation-maximization (EM) algorithm in order to obtain the maximum likelihood estimator (MLE) for the parameters. By estimating the parameters for the cumulative shock models, the system reliability with CCF can be assessed sequentially according to the number of cumulative shocks. The result can be utilizes in dynamic probabilistic safety assessment (PSA), aging studies, or risk management for nuclear power plants. Replacement or maintenance policies can also be developed based on the proposed model.
An elliptical basis function (EBF) network is proposed in this study for the classification of remotely sensed images. Though similar in structure, the EBF network differs from the well-known radial basis function (RBF) network by incorporating full covariance matrices and uses the expectation-maximization (EM) algorithm to estimate the basis functions. Since remotely sensed data often take on mixture -density distributions in the feature space, the proposed network not only possesses the advantage of the RBF mechanism but also utilizes the EM algorithm to compute the maximum likelihood estimates of the mean vectors and covariance matrices of a Gaussian mixture distribution in the training phase. Experimental results show that the EM-based EBF network is faster in training, more accurate, and simpler in structure.
This paper investigates the use of the inverse-free sparse Bayesian learning (SBL) approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency-division multiplexing (OFDM)-based multiuser massive multiple-input multiple-output (MIMO) systems. The Bayesian inference method employs a truncated Gaussian mixture prior for the sought-after low-PAPR signal. To learn the prior signal, associated hyperparameters and underlying statistical parameters, we use the variational expectation-maximization (EM) iterative algorithm. The matrix inversion involved in the expectation step (E-step) is averted by invoking a relaxed evidence lower bound (relaxed-ELBO). The resulting inverse-free SBL algorithm has a much lower complexity than the standard SBL algorithm. Numerical experiments confirm the substantial improvement over existing methods in terms of PAPR reduction for different MIMO configurations.
Seo Changwoo;Hahn Hernsoo;Lee Kiyong;Lee Younjeong
The Journal of the Acoustical Society of Korea
/
v.24
no.3
/
pp.141-149
/
2005
Tn general. Gaussian mixture model (GMM) is used to estimate the speaker model from the speech for speaker identification. The parameter estimates of the GMM are obtained by using the Expectation-Maximization (EM) algorithm for the maximum likelihood (ML) estimation. However the EM algorithm has such drawbacks that it depends heavily on the initialization and it needs the number of mixtures to be known. In this paper, to solve the above problems of the EM algorithm. we propose an EM algorithm with the initialization based on incremental ${\cal}k-means$ for GMM. The proposed method dynamically increases the number of mixtures one by one until finding the optimum number of mixtures. Whenever adding one mixture, we calculate the mutual relationship between it and one of other mixtures respectively. Finally. based on these mutual relationships. we can estimate the optimal number of mixtures which are statistically independent. The effectiveness of the proposed method is shown by the experiment for artificial data. Also. we performed the speaker identification by applying the proposed method comparing with other approaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.