• Title/Summary/Keyword: EISC processor

Search Result 16, Processing Time 0.025 seconds

Branch Predictor Design and Its Performance Evaluation for A High Performance Embedded Microprocessor (고성능 내장형 마이크로프로세서를 위한 분기예측기의 설계 및 성능평가)

  • Lee, Sang-Hyuk;Kim, Il-Kwan;Choi, Lynn
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.129-132
    • /
    • 2002
  • AE64000 is the 64-bit high-performance microprocessor that ADC Co. Ltd. is developing for an embedded environment. It has a 5-stage pipeline and uses Havard architecture with a separated instruction and data caches. It also provides SIMD-like DSP and FP operation by enabling the 8/16/32/64-bit MAC operation on 64-bit registers. AE64000 processor implements the EISC ISA and uses the instruction folding mechanism (Instruction Folding Unit) that effectively deals with LERI instruction in EISC ISA. But this unit makes branch prediction behavior difficult. In this paper, we designs a branch predictor optimized for AE64000 Pipeline and develops a AES4000 simulator that has cycle-level precision to validate the performance of the designed branch predictor. We makes TAC(Target address cache) and BPT(branch prediction table) seperated for effective branch prediction and uses the BPT(removed indexed) that has no address tags.

  • PDF

Low-Gate-Count 32-Bit 2/3-Stage Pipelined Processor Design (소면적 32-bit 2/3단 파이프라인 프로세서 설계)

  • Lee, Kwang-Min;Park, Sungkyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • With the enhancement of built-in communication capabilities in various meters and wearable devices, which implies Internet of things (IoT), the demand of small-area embedded processors has increased. In this paper, we introduce a small-area 32-bit pipelined processor, Juno, which is available in the field of IoT. Juno is an EISC (Extendable Instruction Set Computer) machine and has a 2/3-stage pipeline structure to reduce the data dependency of the pipeline. It has a simple pipeline controller which only controls the program counter (PC) and two pipeline registers. It offers $32{\times}32=64$ multiplication, 64/32=32 division, $32{\times}32+64=64$ MAC (multiply and accumulate) operations together with 32*32=64 Galois field multiplication operation for encryption processing in wireless communications. It provides selective inclusion of these algebraic logic blocks if necessary in order to reduce the area of the overall processor. In this case, the gate count of our integer core amounts to 12k~22k and has a performance of 0.57 DMIPS/MHz and 1.024 Coremark/MHz.

Design and FPGA Implementation of Scalar Multiplication for A CryptoProcessor based on ECC(Elliptic Curve Cryptographics) (ECC(Elliptic Curve Crptographics) 기반의 암호프로세서를 위한 스칼라 곱셈기의 FPGA 구현)

  • Hwang Jeong-Tae;Kim Young-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.529-532
    • /
    • 2004
  • The ECC(Elliptic Curve Cryptogrphics), one of the representative Public Key encryption algorithms, is used in Digital Signature, Encryption, Decryption and Key exchange etc. The key operation of an Elliptic curve cryptosystem is a scalar multiplication, hence the design of a scalar multiplier is the core of this paper. Although an Integer operation is computed in infinite field, the scalar multiplication is computed in finite field through adding points on Elliptic curve. In this paper, we implemented scalar multiplier in Elliptic curve based on the finite field GF($2^{163}$). And we verified it on the Embedded digital system using Xilinx FPGA connected to an EISC MCU. If my design is made as a chip, the performance of scalar multiplier applied to Samsung $0.35 {\mu}m$ Phantom Cell Library is expected to process at the rate of 8kbps and satisfy to make up an encryption processor for the Embedded digital doorphone.

  • PDF

Design and FPGA Implementation of the Scalar Multiplier for a CryptoProcessor based on ECC(Elliptic Curve Cryptographics) (ECC(Elliptic Curve Crptographics) 기반의 보안프로세서를 위한 스칼라 곱셈기의 FPGA 구현)

  • Choi, Seon-Jun;Hwang, Jeong-Tae;Kim, Young-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1071-1074
    • /
    • 2005
  • The ECC(Elliptic Curve Cryptogrphics), one of the representative Public Key encryption algorithms, is used in Digital Signature, Encryption, Decryption and Key exchange etc. The key operation of an Elliptic curve cryptosystem is a scalar multiplication, hence the design of a scalar multiplier is the core of this paper. Although an Integer operation is computed in infinite field, the scalar multiplication is computed in finite field through adding points on Elliptic curve. In this paper, we implemented scalar multiplier in Elliptic curve based on the finite field $GF(2^{163})$. And we verified it on the Embedded digital system using Xilinx FPGA connected to an EISC MCU(Agent 2000). If my design is made as a chip, the performance of scalar multiplier applied to Samsung $0.35\;{\mu}m$ Phantom Cell Library is expected to process at the rate of 8kbps and satisfy to make up an encryption processor for the Embedded digital information home system.

  • PDF

Design of an Asynchronous Instruction Cache based on a Mixed Delay Model (혼합 지연 모델에 기반한 비동기 명령어 캐시 설계)

  • Jeon, Kwang-Bae;Kim, Seok-Man;Lee, Je-Hoon;Oh, Myeong-Hoon;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.64-71
    • /
    • 2010
  • Recently, to achieve high performance of the processor, the cache is splits physically into two parts, one for instruction and one for data. This paper proposes an architecture of asynchronous instruction cache based on mixed-delay model that are DI(delay-insensitive) model for cache hit and Bundled delay model for cache miss. We synthesized the instruction cache at gate-level and constructed a test platform with 32-bit embedded processor EISC to evaluate performance. The cache communicates with the main memory and CPU using 4-phase hand-shake protocol. It has a 8-KB, 4-way set associative memory that employs Pseudo-LRU replacement algorithm. As the results, the designed cache shows 99% cache hit ratio and reduced latency to 68% tested on the platform with MI bench mark programs.

Low-Complexity Deeply Embedded CPU and SoC Implementation (낮은 복잡도의 Deeply Embedded 중앙처리장치 및 시스템온칩 구현)

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.699-707
    • /
    • 2016
  • This paper proposes a low-complexity central processing unit (CPU) that is suitable for deeply embedded systems, including Internet of things (IoT) applications. The core features a 16-bit instruction set architecture (ISA) that leads to high code density, as well as a multicycle architecture with a counter-based control unit and adder sharing that lead to a small hardware area. A co-processor, instruction cache, AMBA bus, internal SRAM, external memory, on-chip debugger (OCD), and peripheral I/Os are placed around the core to make a system-on-a-chip (SoC) platform. This platform is based on a modified Harvard architecture to facilitate memory access by reducing the number of access clock cycles. The SoC platform and CPU were simulated and verified at the C and the assembly levels, and FPGA prototyping with integrated logic analysis was carried out. The CPU was synthesized at the ASIC front-end gate netlist level using a $0.18{\mu}m$ digital CMOS technology with 1.8V supply, resulting in a gate count of merely 7700 at a 50MHz clock speed. The SoC platform was embedded in an FPGA on a miniature board and applied to deeply embedded IoT applications.