• Title/Summary/Keyword: EIS-N

Search Result 46, Processing Time 0.038 seconds

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang;Li, Meng;Meng, Yan;Li, An
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.755-765
    • /
    • 2018
  • In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.

Fabrication and Characterization of Pyrolyzed Carbon for Use as an Electrode Material in Electrochemical Biosensor (전기화학 바이오센서의 전극물질로 응용을 위한 열분해 탄소의 제작 및 특성 연구)

  • Lee, Jung-A.;Hwang, Seong-Pil;Kwak, Ju-Hyoun;Park, Se-Il;Lee, Seung-Seob;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.986-992
    • /
    • 2007
  • This paper presents the fabrication and characterization of carbon films pyrolyzed with various photoresists for bioMEMS applications. To verify the usefulness of pyrolyzed carbon films as an electrode material in an electrochemical biosensor developed by the authors, interactions between avidin and biotin on the pyrolyzed carbon film were studied via electrochemical impedance spectroscopy based on electrostatic interactions between avidin and negatively-charged ferricyanide. The pyrolyzed carbon films were characterized using a surface profiler, a precision semiconductor parameter analyzer, a nanoindentor, scanning electron microscopy, and atomic force microscopy. Amine conjugated biotin was immobilized on the electrode using EDC/NHS as crosslinkers after $O_2$ plasma treatment to enhance functional groups on the carbon electrode pyrolyzed at $1000^{\circ}C$ with AZ9260. The detection of avidin binding with different concentrations in a range of 0.75 nM to $7.5\;{\mu}M$ to the pyrolyzed carbon electrode modified with biotin was carried out by measuring the electrochemical impedance change. The results show that avidin binds to the biotin on the electrode not by non-specific interaction but by specific interaction, and that EIS successfully detects this binding event. Pyrolyzed carbon films are a promising material for miniaturization, integration, and low-cost fabrication in electrochemical biosensors.

Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition (에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성)

  • Ryu, Hyun-Sam;Lim, Tae-Seop;Ryu, Jung-Ho;Park, Dong-Soo;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.439-446
    • /
    • 2011
  • Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

Evaluation of the Fruit Quality Indices during Maturation and Ripening and the Influence of Short-term Temperature Management on Shelf-life during Simulated Exportation in 'Changjo' Pears (Pyrus pyrifolia Nakai) (배 신품종 '창조'의 성숙 중 품질 요인 변화 및 수송온도 환경에 따른 반응성)

  • Lee, Ug-Yong;Choi, Jin-Ho;Ahn, Young-Jik;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.378-385
    • /
    • 2017
  • In this study, we evaluated the changes of fruit quality indices during fruit development and ripening in Korean new pear cultivar 'Changjo', developed from a cross between 'Tama' and '81-1-27' ('Danbae' ${\times}$ 'Okusankichi') in 1995 and named in 2009, to determine appropriate harvest time and to enhance the market quality and broaden the cultivation area. The fruits of 'Changjo' pears harvested from 132 days after full bloom (DAFB) to 160 DAFB. Fruit growth and quality indices were monitored at 1 week interval by measuring fruit weight, length, diameter, firmness, and taste related quality indices. The calculated fruit fresh weight increased continuously with fruit development and reached to an average of 594g on Sep. 20 (160 DAFB). The ratio of length to diameter declines as fruit maturation progress, resulting in 0.898 for ripe fruit stage as a round oblate shape. Flesh firmness of 'Changjo' pears showed over 30N until 153 DAFB and then decreased abruptly with fruit ripening, reaching a final level of about 26.44N on 160 DAFB. Starch content of fruit sap was also decreased abruptly after 146 DAFB which decreased almost half of the fruits harvested at 139 DAFB. In parallel with the decrease of flesh firmness, ethanol insoluble solids (EIS) content decreased sharply with fruit ripens, only 50% of EIS was detected on the fruits harvested on 160 DAFB when compared to that of the fruits harvested on 139 DAFB (Aug. 30). The maximum value of soluble solids contents was observed in the fruits harvested on 153 DAFB, resulting in $14.2^{\circ}Brix$. The changes of skin color difference $a^*$ which means loss of green color occurred only after 139 DAFB, coincide with the decrease of SPAD value of the fruit skin. The sugars of the 80% ethanol soluble fraction consisted mainly of fructose, sorbitol, glucose and sucrose, also increased during maturation and ripening. Fructose and sucrose contents were larger than those of glucose and sorbitol in flesh tissues. These results were explained that stored starch is converted to soluble sugars during fruit maturation, mainly in fructose and sucrose increasing the sweetness of this cultivar. Total polyphenols were increased up to middle of fruit maturation (146 DAFB) and then decreased continuously until the end of fruit maturation. Consequently, our results suggested that the commercial harvest time of 'Changjo' pears should not be passed 153 DAFB and late harvest of this cultivar would not good for quality maintenance during shelf-life. As a result of the post-harvest low-temperature acclimation experiment during the short-term transportation period, fruits harvested at 146 DAFB tended to maintain higher firmness after 14 days of simulated marketing at $25^{\circ}C$ compared to fruits harvested at 153 DAFB regardless of temperature set. And, the slower the rate of decrease to the final transport temperature of $5^{\circ}C$, the higher the incidence of internal browning and ethylene production. Therefore, in order to suppress the physiological disorder and to maintain the fruit quality when exporting to Southeast Asia in the 'Chanjo' pears, it is desirable to lower the temperature of the fruits within a short time after harvest and to set the harvest time before 146 days after full bloom.

Reduced Graphene Oxide / Polyaniline Composite Material for Supercapacitor Electrode (환원된 그래핀 옥사이드/폴리아닐린 복합재료 기반의 슈퍼커패시터용 전극 제조)

  • Jeong, Hyeon Taek;Kim, Se Hyun;Ahn, Won Jun;Choi, Jae Yong;Park, Hyeon Young;Kim, Chang Hyun;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1088-1095
    • /
    • 2018
  • In this study, reduced graphene oxide/polyaniline composite was fabricated tomaximize their advantages with electrochemical performances and use as a electrodematerial for supercapcaitor. Polyaniline as an electrode material was synthesized bychemical polymerization of aniline monomer and reduced graphene oxide wasintroduced to prepare composite with polyaniline without any pre-treatment. Thereduced graphene oxide, polyaniline and their composite electrodes were fabricatedon gold coated PET(polyethylene terephthalate) substrate through spray coatingmethod which can also apply to industrial scale. we have also prepared reducedgraphene oxide and polyaniline single material electrode to compare theirelectrochemical properties with reduced graphene oxide/polyaniline composite electrode. We have analyzed and compared electrochemical properties of eachelectrodes by using cyclic voltammetry(CV), galvanostaticcharge-discharge(GCD) and electrochemical impedancespectroscopy(EIS) at same condition. As a result, reduced graphene oxide /polyaniline composite electrode showed higher capacitance value more thanpolyaniline and reduced graphene oxide electrode, respectively. Internal resistanceof reduce graphene oxide/polyaniline composite electrode was 24% and 58% lessthan polaniline and reduced graphene oxide electrode respectively. These resultsconsidered that reduced graphene oxide/polyaniline composite electrode has potential ability and enable to apply flexible energy storage and wearable devices.