Browse > Article
http://dx.doi.org/10.1007/s13391-018-0085-3

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries  

Zhang, Qingtang (School of Petrochemical Engineering, Lanzhou University of Technology)
Li, Meng (School of Petrochemical Engineering, Lanzhou University of Technology)
Meng, Yan (School of Petrochemical Engineering, Lanzhou University of Technology)
Li, An (School of Petrochemical Engineering, Lanzhou University of Technology)
Publication Information
Electronic Materials Letters / v.14, no.6, 2018 , pp. 755-765 More about this Journal
Abstract
In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.
Keywords
Hard carbon nanotubes; Conjugated microporous polymers; Anode; Lithium ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Scrosati, B., Hassoun, J., Sun, Y.-K. : Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287-3295 (2011)   DOI
2 Ma, B.C., Ghasimi, S., Landfester, K., Vilela, F., Zhang, K.A.I. : Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J. Mater. Chem. A 3(31), 16064-16071 (2015)   DOI
3 Mao, Y., Duan, H., Xu, B., Zhang, L., Hu, Y., Zhao, C., Wang, Z., Chen, L., Yang, Y. : Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5(7), 7950-7955 (2012)   DOI
4 Pu, J., Li, C., Tang, L., Li, T., Ling, L., Zhang, K., Xu, Y., Li, Q., Yao, Y. : Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 94, 650-660 (2015)   DOI
5 Zhang, K., Kopetzki, D., Seeberger, P.H., Antonietti, M., Vilela, F. : Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew. Chem. Int. Ed. Engl. 52(5), 1432-1436 (2013)   DOI
6 Zhang, Y., Sun, K., Liang, Z., Wang, Y., Ling, L. : N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl. Surf. Sci. 427, 823-829 (2018)   DOI
7 Larcher, D., Tarascon, J.M. : Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (1), 19-29 (2015)   DOI
8 Tarascon, J.-M., Armand, M. : Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001)   DOI
9 Balogun, M.-S., Qiu, W., Luo, Y., Meng, H., Mai, W., Onasanya, A., Olaniyi, T.K., Tong, Y. : A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res. 9(10), 2823-2851 (2016)   DOI
10 Zhang, Q., Mei, J., Wang, X., Tang, F., Fan, W., Lu, W. : High performance spinel $LiNi_{0.5}Mn_{1.5}O_4$ cathode material by lithium polyacrylate coating for lithium ion battery. Electrochim. Acta 143, 265-271 (2014)   DOI
11 Zhang, Q., Dai, Q., Li, M., Wang, X., Li, A. : Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage. J. Mater. Chem. A 4(48), 19132-19139 (2016)   DOI
12 Wang, X., Wang, W., Zhu, Z., Yan, C., Zhang, Q. : Metal oxideembedded porous carbon nanoparticles as high-performance anode materials for lithium ion batteries. Ionics 23(12), 3255-3263 (2017)   DOI
13 Ding, Y., Chen, L., Pan, P., Du, J., Fu, Z., Qin, C., Wang, F. : Nitrogen-doped carbon coated MnO nanopeapods as superior anode materials for lithium ion batteries. Appl. Surf. Sci. 422, 1113-1119 (2017)   DOI
14 Seman, R.N.A.R., Azam, M.A., Mohamad, A.A. : Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew. Sustain. Energy Rev. 75, 644-659 (2017)   DOI
15 Guoping, W., Bolan, Z., Min, Y., Xiaoluo, X., Meizheng, Q., Zuolong, Y. : A modified graphite anode with high initial efficiency and excellent cycle life expectation. Solid State Ionics 176(9-10), 905-909 (2005)   DOI
16 Bulusheva, L.G., Okotrub, A.V., Kurenya, A.G., Zhang, H., Zhang, H., Chen, X., Song, H. : Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49(12), 4013-4023 (2011)   DOI
17 Li, X., Liu, J., Zhang, Y., Li, Y., Liu, H., Meng, X., Yang, J., Geng, D., Wang, D., Li, R., Sun, X. : High concentration nitrogen doped carbon nanotube anodes with superior $Li^+$ storage performance for lithium rechargeable battery application. J. Power Sources 197, 238-245 (2012)   DOI
18 de las Casas, C., Li, W. : A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74-85 (2012)   DOI
19 Bao, L., Sun, H., Zhu, Z., Liang, W., Mu, P., Zang, J., Li, A. : Synthesis and properties of tubular-shape conjugated microporous polymers with high purity. Mater. Lett. 178, 5-9 (2016)   DOI
20 Li, J., Zhang, F., Wang, C., Shao, C., Li, B., Li, Y., Wu, Q.-H., Yang, Y. : Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries. Mater. Des. 133, 169-175 (2017)   DOI
21 Sun, H., La, P., Yang, R., Zhu, Z., Liang, W., Yang, B., Li, A., Deng, W. : Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of $CO_2$ and volatile iodine. J. Hazard. Mater. 321, 210-217 (2017)   DOI
22 Liu, Y., Xue, J.S., Zheng, T., Dahn, J.R. : Mechanism of lithium insertion in hardcarbons prepared by phrolysis of epoxy resins. Carbon 34(2), 193-200 (1996)   DOI
23 Wang, J., Kaskel, S. : KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710-23725 (2012)   DOI
24 Peng, Y.-T., Lo, C.-T. : Electrospun porous carbon nanofibers as lithium ion battery anodes. J. Solid State Electrochem. 19(11), 3401-3410 (2015)   DOI
25 Yang, S., Huo, J., Song, H., Chen, X. : A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta 53(5), 2238-2244 (2008)   DOI
26 Xiong, Z., Yun, Y.S., Jin, H.J. : Applications of carbon nanotubes for lithium ion battery anodes. Materials (Basel) 6(3), 1138-1158 (2013)   DOI
27 Kawasaki, S., Hara, T., Iwai, Y., Suzuki, Y. : Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater. Lett. 62(17-18), 2917-2920 (2008)   DOI
28 Lee, B.-S., Son, S.-B., Park, K.-M., Yu, W.-R., Oh, K.-H., Lee, S.-H. : Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sources 199, 53-60 (2012)   DOI
29 Zhou, X., Tang, J., Yang, J., Xie, J., Huang, B. : Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J. Mater. Chem. A 1(16), 5037-5044 (2013)   DOI
30 Gaddam, R.R., Yang, D., Narayan, R., Raju, K., Kumar, N.A., Zhao, X.S. : Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346-352 (2016)   DOI
31 Kakunuri, M., Sharma, C.S. : Candle soot derived fractal-like carbon nanoparticles network as high-rate lithium ion battery anode material. Electrochim. Acta 180, 353-359 (2015)   DOI
32 Zeng, S.-Z., Yao, Y., Zeng, X., He, Q., Zheng, X., Chen, S., Tu, W., Zou, J. : A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries. J. Power Sources 357, 11-18 (2017)   DOI
33 Li, A., Lu, R.F., Wang, Y., Wang, X., Han, K.L., Deng, W.Q. : Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew. Chem. Int. Ed. Engl. 49(19), 3330-3333 (2010)   DOI
34 Zou, S., Xu, X., Zhu, Y., Cao, C. : Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous Mesoporous Mater. 251, 114-121 (2017)   DOI
35 Mondal, A.K., Kretschmer, K., Zhao, Y., Liu, H., Fan, H., Wang, G. : Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater. 246, 72-80 (2017)   DOI
36 Li, M., Wu, Y., Zhao, F., Wei, Y., Wang, J., Jiang, K., Fan, S. : Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon 69, 444-451 (2014)   DOI
37 Chen, Y., Sun, H., Yang, R., Wang, T., Pei, C., Xiang, Z., Zhu, Z., Liang, W., Li, A., Deng, W. : Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and $CO_2$ uptake. J. Mater. Chem. A 3(1), 87-91 (2015)   DOI
38 Liu, H., Li, Q., Li, Q., Jin, W., Li, X., Hameed, A., Qiao, S. : Rational skeletal rigidity of conjugated microporous polythiophenes for gas uptake. Polym. Chem. 8(44), 6733-6740 (2017)   DOI
39 Vilela, F., Zhang, K., Antonietti, M. : Conjugated porous polymers for energy applications. Energy Environ. Sci. 5(7), 7819-7832 (2012)   DOI