• Title/Summary/Keyword: EGS 지열발전

Search Result 26, Processing Time 0.024 seconds

Development of Project Management System for Geothermal Well Construction (지열발전 시추공 구축 프로젝트관리시스템 개발)

  • Kim, Kwang-Yeom;Lee, Seung-Soo
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.38-46
    • /
    • 2012
  • Enhanced Geothermal System (EGS) among geothermal system types enables to produce sustainable energy even in non-volcanic region while conventional geothermal energy has been restricted to obtain only from hot and permeable formation such as in volcanic regions. Successful EGS project in terms of economy, however, can be expected only when the project is managed effectively considering most of influencing factors (e.g., tangible and intangible resources, cost, time, risks, etc.). In particular, well construction is of the utmost importance in geothermal project as it dominantly influences on time and cost in the whole project. Therefore, when it comes to viable geothermal project without abundant experience, managing drilling economically and efficiently is inevitable. In this study, a project management system for well construction in geothermal project based on project control system including work breakdown structure and cost account was developed to predict and assess the performance of drilling and to visualize the progress.

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

Situating the Anthropocene: The Social Construction of the Pohang 'Triggered' Earthquake (인류세 맥락화하기: 포항 '촉발지진'의 사회적 구성)

  • KIM, Kiheung
    • Journal of Science and Technology Studies
    • /
    • v.19 no.3
    • /
    • pp.51-117
    • /
    • 2019
  • On 15th November 2017, the coastal city of Pohang, located in the Southeastern part of South Korea was shaken by a magnitude 5.4 earthquake. The earthquake displaced more than 1,700 residents and caused more than $ 300 million dollars of economic loss. It was the second most damaging earthquake in the history of Korea. Soon after the earthquake, a group of scientists raised a possible link between the first Enhanced Geothermal System (EGS) project and the earthquake. At the same time, another group of scientists put forward a different hypothesis of the causation of the earthquake claiming that it was caused by the geological movements that were initiated by the Great Tohoku Earthquake in 2011. Since then, there were scientific debates between the two different groups of scientists. The scientific debate on the causation of the earthquake has been concluded temporarily by the Research Investigatory Committee on the Pohang Earthquake in 2019. The research committee concluded that the earthquake was caused by the Pohang EGS system: this means that the earthquake can be defined not as a natural earthquake, but as an artificially triggered earthquake. This article is to examine the Pohang earthquake can be defined as an Anthropocenic event. The newly suggested concept, the Anthropocene is a relatively novel term to classify the earthly strata and their relationship to geological time. The current geological period should be defined by human activities and man-made earthly environment. Although the term is basically related to geological classification, the Anthropocene has been widely debated amongst humanist and social science scholars. The current disastrous situation of our planet also implies with the Anthropocene. This paper is to discuss how to understand anthropogenic events. In particular, the paper pays attention to two different scholarly positions on the Anthropocene: Isabelle Stenger's Gaia theory and Barbara Herrnstein Smith's relativist theory. The former focuses on the earthly inevitable catastrophe of Anthropocene while the latter suggests to situate and contextualise anthropogenic events. On the basis of the theoretical positions, the article is to analyse how the Pohang earthquake can be located and situated.

Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields (유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰)

  • Nam, Myung-Jin;Han, Nu-Ree;Kim, Hee-Joon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.164-175
    • /
    • 2011
  • Using natural electromagnetic (EM) fields at low frequencies, magnetotelluric (MT) surveys can investigate conductivity structures of the deep subsurface and thus are used to explore geothermal energy resources and investigate proper sites for not only geological $CO_2$ sequestration but also enhanced geothermal system (EGS). Moreover, marine MT data can be used for better interpretation of marine controlled-source EM data. In the interpretation of MT data, MT modeling schemes are important. This study improves a three dimensional (3D) MT modeling algorithm which uses edge finite elements. The algorithm computes magnetic fields by solving an integral form of Faraday's law of induction based on a finite difference (FD) strategy. However, the FD strategy limits the algorithm in computing vertical magnetic fields for a topographic model. The improved algorithm solves the differential form of Faraday's law of induction by making derivatives of electric fields, which are represented as a sum of basis functions multiplied by corresponding weightings. In numerical tests, vertical magnetic fields for topographic models using the improved algorithm overcome the limitation of the old algorithm. This study recomputes induction vectors and tippers for a 3D hill and valley model which were used for computation of the responses using the old algorithm.

A Technical Review of Hydromechanical Properties of Jointed Rock Mass accompanied by Fluid Injection (유체 주입을 동반한 절리 암반의 수리-역학 특성 평가에 대한 고찰)

  • Kim, Hyung-Mok;Guglielmi, Yves;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.12-29
    • /
    • 2019
  • Permeability and its change due to a fluid injection in jointed rock mass is an important factor to be well identified for a safe and successful implementation of Carbon Capture and Sequestration (CCS), Enhanced Geothermal System (EGS) and Enhanced Oil Recovery (EOR) projects which may accompany injection-induced hydromechanical deformation of the rock mass. In this technical report, we first reviewed important issues in evaluating initial permeability using borehole hydraulic tests and numierical approaches for understanding coupled hydromechanical properties of rock mass. Recent SIMFIP testing device to measure these hydromechanical properties directly through in-situ borehole experiments was also reviewed. The technical significance and usefulness of the device for further applications was discussed as well.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.