• Title/Summary/Keyword: EFTEM

Search Result 5, Processing Time 0.02 seconds

The Study of In Clustering Effects in InGaN/GaN Multiple Quantum Well Structure (InGaN/GaN 다중 양자우물 구조에서의 In 응집 현상의 연구)

  • 조형균;이정용;김치선;양계모
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.636-639
    • /
    • 2001
  • InGaN/GaN multiple quantum wells (MQWs) grown with various growth interruptions between the InGaN well and GaN barrier by metal-organic chemical vapor deposition were investigated using photoluminescence, high-resolution transmission electron microscopy, and energy filtered transmission electron microscopy (EFTEM). The luminescence intensity of the MQWs with growth interruptions is abruptly reduced compared to that of the MQW without growth interruption. Also, as the interruption time increases the peak emission shows a continuous blue shift. Evidence of indium clustering is directly observed both by using an indium ratio map of the MQWs and from indium composition measurements along an InGaN well using EFTEM. The higher intensity and lower energy emission of light from the MQW grown without interruption showing indium clustering is believed to be caused by the recombination of excitons localized in indium clustering regions and the increased indium composition in these recombination centers.

  • PDF

Morphological Changes Associated with the Antibacterial Action of Silver Ions against Bovine Mastitis Pathogens (은 이온의 항균효과에 대한 소 유방염 원인균의 형태학적 변화)

  • Kang, Seog-Jin;Seol, Jae-Won;Hur, Tai-Young;Jung, Young-Hun;Choe, Chang-Yong;Park, Sang-Youel
    • Journal of Veterinary Clinics
    • /
    • v.28 no.6
    • /
    • pp.576-580
    • /
    • 2011
  • Silver has potent antibacterial activity against a variety of bacteria while maintaining low toxicity in mammalian cells. This study was conducted to investigate the possible mechanism underlying the bactericidal effects of silver ions against bovine mastitis pathogens using electron microscopy. We used two different bacterial strains, Escherichia coli and Staphylococcus aureus, which are primarily responsible for the majority of bovine mastitis cases. Interaction between the bacteria and silver ions (50 ${\mu}g/mL$, 2 hours) were studied using energy-filtering transmission electron microscopy (EFTEM). EFTEM images showed that E. coli and S. aureus cells treated with the silver ions had distorted plasma membranes, silver ions attached to the outer membranes, scattered electron-light material, and leakage of cell contents from disrupted cell membranes.

Patterned Surfaces in Self-Organized Block Copolymer Films with Hexagonally Ordered Microporous Structures

  • Hayakawa Teruaki;Kouketsu Takayuki;Kakimoto Masa-alki;Yokoyama Hideaki;Horiuchi Shin
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.52-58
    • /
    • 2006
  • A novel fabrication of the patterned surfaces in the polymer films was demonstrated by using the self-organizing character of the block copolymers of polystyrene-b-oligothiophenes and polystyrene-b-aromatic amide dendron. Hexagonally arranged open pores with a micrometer-size were spontaneously formed by casting the polymer solutions under a moist air flow. The amphiphilic character of the block copolymers played the crucial role as a surfactant to stabilize the inverse emulsion of water in the organic solvent, and subsequently the aggregated structure of the hydrophilic oligothiophene or aromatic amide dendron segments remained on the interiors of the micropores. The chemical composition on the top of the surface of the microporous films was characterized by energy-filtering transmission electron microscopy (EFTEM) or a time-of-flight secondary ion mass spectrometer (ToF-SIMS). The characterizations clearly indicated that the patterned surfaces in the self-organized block copolymer films with the hexagonally ordered microporous structures were fabricated in a single step.

Non-linear optical properties of PECVD nanocrystal-Si nanosecond excitation (PECVD로 제조된 나노결정실리콘 비선형 광학적특성)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Kim, Joo Hoe;Kim, Chul Joong;Lee, Chang Gwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • A study of the non-linear optical properties of nanocrystal-Si embedded in SiO2 has been performed by using the z-scan method in the nanosecond and femtosecond ranges. Substoichiometric SiOx films were grown by plasma-enhanced chemical-vapor deposition(PECVD) on silica substrates for Si excesses up to 24 at/%. An annealing at $1250^{\circ}C$ for 1 hour was performed in order to precipitate nanocrystal-Si, as shown by EFTEM images. Z-scan results have shown that, by using 5-ns pulses, the non-linear process is ruled by thermal effects and only a negative contribution can be observed in the non-linear refractive index, with typical values around $-10-10cm^2/W$. On the other hand, femtosecond excitation has revealed a pure electronic contribution to the nonlinear refractive index, obtaining values in the order of 10-12 cm2/W. Simulations of heat propagation have shown that the onset of the temperature rise is delayed more than half pulse-width respect to the starting edge of the excitation. A maximum temperature increase of ${\Delta}T=123.1^{\circ}C$ has been found after 3.5ns of the laser pulse maximum. In order to minimize the thermal contribution to the z-scan transmittance and extract the electronic part, the sample response has been analyzed during the first few nanoseconds. By this method we found a reduction of 20% in the thermal effects. So that, shorter pulses have to be used obtain just pure electronic nonlinearities.

  • PDF

Principle and Applications of EELS Spectroscopy in Material Characterizations (재료 분석에서 전자 에너지 손실 스펙트럼 (EELS)의 원리 및 응용 연구)

  • Yoon, Sang-Won;Kim, Kyou-Hyun;Ahn, Jae-Pyoung;Park, Jong-Ku
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.157-164
    • /
    • 2007
  • An electron energy loss spectroscopy (EELS) instrument attached on transmission electron microscopy (TEM) becomes a powerful and analytical tool for extracting the noble information of materials using the enhancement of TEM images, elemental analysis, elemental or chemical mapping images, electron energy loss near edge structure (ELNES), and extended energy-loss fine structure (EXELFS). In this review, the principle and applications of EELS which is widely used in material, life, and electronic sciences were introduced.