Patterned Surfaces in Self-Organized Block Copolymer Films with Hexagonally Ordered Microporous Structures

  • Hayakawa Teruaki (Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Kouketsu Takayuki (Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Kakimoto Masa-alki (Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Yokoyama Hideaki (Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology) ;
  • Horiuchi Shin (Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology)
  • Published : 2006.02.01

Abstract

A novel fabrication of the patterned surfaces in the polymer films was demonstrated by using the self-organizing character of the block copolymers of polystyrene-b-oligothiophenes and polystyrene-b-aromatic amide dendron. Hexagonally arranged open pores with a micrometer-size were spontaneously formed by casting the polymer solutions under a moist air flow. The amphiphilic character of the block copolymers played the crucial role as a surfactant to stabilize the inverse emulsion of water in the organic solvent, and subsequently the aggregated structure of the hydrophilic oligothiophene or aromatic amide dendron segments remained on the interiors of the micropores. The chemical composition on the top of the surface of the microporous films was characterized by energy-filtering transmission electron microscopy (EFTEM) or a time-of-flight secondary ion mass spectrometer (ToF-SIMS). The characterizations clearly indicated that the patterned surfaces in the self-organized block copolymer films with the hexagonally ordered microporous structures were fabricated in a single step.

Keywords

References

  1. L. F. Rozsnyai and M. S. Wrighton, Langmuir, 11, 3913 (1995) https://doi.org/10.1021/la00010a048
  2. Z. Huang, P. C. Wang, A. G. MacDiarmid, Y. Xia, and G. Whitesides, Langmuir, 13, 6480 (1997) https://doi.org/10.1021/la970537z
  3. D. G. Lidzey, M. A. Pate, M. S. Weaver, T. A. Fisher, and D. D. C. Bradley, Synth. Met., 82, 141 (1996) https://doi.org/10.1016/S0379-6779(96)03781-2
  4. S. Noach, E. Z. Faraggi, G. Cohen, Y. Avny, R. Neumann, D. Davidov, and A. Lewis, Appl. Phys. Lett., 69, 3650 (1996) https://doi.org/10.1063/1.117012
  5. G. Fichet, N. Corcoran, P. K. H. Ho, A. C. Arias, J. D. MacKenzie, W. T. S. Huck, and R. H. Friend, Adv. Mater., 16, 1908 (2004) https://doi.org/10.1002/adma.200400316
  6. D. Allard, S. Allard, M. Brehmer, L. Conrad, R. Zentel, C. Stromberg, and J. W. Schultze, Electrochimica Acta, 48, 3137 (2003) https://doi.org/10.1016/S0013-4686(03)00343-8
  7. M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. S. Torres, Adv. Mater., 12, 1499 (2000) https://doi.org/10.1002/1521-4095(200010)12:20<1499::AID-ADMA1499>3.0.CO;2-M
  8. B. Kasemo, Surface Science, 500, 656 (2002) https://doi.org/10.1016/S0039-6028(01)01809-X
  9. A. S. Blawas and W. M. Reichert, Biomaterials, 19, 595 (1998) https://doi.org/10.1016/S0142-9612(97)00218-4
  10. M. Mrksich and G. M. Whitesides, Trends. Biotechnol., 13, 228 (1995) https://doi.org/10.1016/S0167-7799(00)88950-7
  11. A. Kumar, N. Abbott, E. Kim, H. Biebuyck, and G. M. Whitesides, Acc. Chem. Res., 28, 219 (1995) https://doi.org/10.1021/ar00053a003
  12. L. Dai and A. W. H. Mau, J. Phys. Chem. B., 104, 1891 (2000) https://doi.org/10.1021/jp9926793
  13. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Engl., 37, 551 (1998)
  14. T. Hayakawa and S. Horiuchi, Angew. Chem. Int. Ed., 42, 2285 (2003) https://doi.org/10.1002/anie.200219877
  15. T. Hayakawa and H. Yokoyama, Langmuir, 21, 10288 (2005) https://doi.org/10.1021/la0519195
  16. G. Widawski, M. Rawiso, and B. François, Nature, 369, 387 (1994) https://doi.org/10.1038/369387a0
  17. S. A. Jenekhe and X. L. Chen, Science, 283, 372 (1999) https://doi.org/10.1126/science.283.5400.372
  18. T. Nishikawa, J. Nishida, R. Ookura, S. Nishimura, S. Wada, T. Karino, and M. Shimomura, Mater. Sci. Eng. C., 10, 141 (1999) https://doi.org/10.1016/S0928-4931(99)00110-1
  19. M. Srinivasarao, D. Collings, A. Philips, and S. Patel, Science, 292, 79 (2001) https://doi.org/10.1126/science.1057887
  20. L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, Adv. Mater., 16, 115 (2004) https://doi.org/10.1002/adma.200306031
  21. A. M. Belu, Z. Yang, R. Aslami, and A. Chilkoti, Anal. Chem., 73, 143 (2001) https://doi.org/10.1021/ac000771l