Browse > Article

Morphological Changes Associated with the Antibacterial Action of Silver Ions against Bovine Mastitis Pathogens  

Kang, Seog-Jin (National Institute of Animal Science, Rural Development Administration)
Seol, Jae-Won (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University)
Hur, Tai-Young (National Institute of Animal Science, Rural Development Administration)
Jung, Young-Hun (National Institute of Animal Science, Rural Development Administration)
Choe, Chang-Yong (National Institute of Animal Science, Rural Development Administration)
Park, Sang-Youel (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University)
Publication Information
Journal of Veterinary Clinics / v.28, no.6, 2011 , pp. 576-580 More about this Journal
Abstract
Silver has potent antibacterial activity against a variety of bacteria while maintaining low toxicity in mammalian cells. This study was conducted to investigate the possible mechanism underlying the bactericidal effects of silver ions against bovine mastitis pathogens using electron microscopy. We used two different bacterial strains, Escherichia coli and Staphylococcus aureus, which are primarily responsible for the majority of bovine mastitis cases. Interaction between the bacteria and silver ions (50 ${\mu}g/mL$, 2 hours) were studied using energy-filtering transmission electron microscopy (EFTEM). EFTEM images showed that E. coli and S. aureus cells treated with the silver ions had distorted plasma membranes, silver ions attached to the outer membranes, scattered electron-light material, and leakage of cell contents from disrupted cell membranes.
Keywords
silver ion; mastitis; EFTEM; antibacterial activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Holt KB, Bard AJ. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 2005; 44: 13214-13223.   DOI   ScienceOn
2 Hotta M, Nakajima H, Yamamoto K, Aono M. Antibacterial temporary filling materials: the effect of adding various ratios of Ag-Zn-zeolite. J Oral Rehabil 1998; 25: 485-489.   DOI   ScienceOn
3 Hu S, Concha C, Johannisson A, Meglia G, Waller KP. Effect of subcutaneous injection of ginseng on cows with subclinical Staphylococcus aureus mastitis. J Vet Med B Infect Dis Vet Public Health 2001; 48: 519-528.   DOI   ScienceOn
4 Kai K, Komine K, Asai K, Kuroishi T et al. Antiinflammatory effects of intramammary infusions of glycyrrhizin in lactating cows with mastitis caused by coagulase-negative staphylococci. Am J Vet Res 2003; 64: 1213-1220.   DOI   ScienceOn
5 Kawai K, Nagahata H, Lee NY, Anri A, Shimazaki K. Effect of infusing lactoferrin hydrolysate into bovine mammary glands with subclinical mastitis. Vet Res Commun 2003; 27: 539-548   DOI   ScienceOn
6 Klabunde KJ, Koper OB, Klabunde JS et al. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 2002; 44: 49-55.   DOI   ScienceOn
7 Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005; 26: 2081-2088.   DOI   ScienceOn
8 Lansdown AB. Silver. I: its antibacterial properties and mechanism of action. J Wound Care 2002; 11: 125-130.   DOI
9 Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 1997; 25: 279-283.   DOI   ScienceOn
10 Lok CN, Ho CM, Chen R et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006; 5: 916-924.   DOI   ScienceOn
11 Mermel LA, Stolz SM, Maki DG. Surface antimicrobial activity of heparin-bonded and antiseptic-impregnated vascular catheters. J Infect Dis 1993; 167: 920-924.   DOI   ScienceOn
12 Modak SM, Fox CL. Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharm 1973; 22: 2391-2404.   DOI   ScienceOn
13 Berger TJ, Spadaro JA, Chapin SE, Becker RO. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 1976; 357-358.
14 Bechert T, Steinrucke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nature Med 2000; 6: 1053-1056.   DOI   ScienceOn
15 Bennett RM, Christiansen K, Clifton-Hadley RS. Estimating the costs associated with endemic diseases of dairy cattle. J Dairy Res 1999; 66: 455-459.   DOI   ScienceOn
16 Berger TJ, Spadaro JA, Bierman R, Chapin SE, Becker RO. Antifungal properties of electrically generated metallic ions. Antimicrob Agents Chemother 1976; 10: 856-860.   DOI   ScienceOn
17 Bramley AJ, Foster R. Effects of lysostaphin on staphylococcus aureus infections of the mouse mammary gland. Res Vet Sci 1990; 49: 120-121.
18 Coward JE, Carr HS, Rosenkranz HS. Silver sulfadiazine: effect on the ultrastructure of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1973; 3: 621-624.   DOI   ScienceOn
19 Dibrov P, Dzioba J, Gosink KK, Hase CC. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 2002; 46: 2668-2670.   DOI   ScienceOn
20 Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000; 52: 662-668.   DOI   ScienceOn
21 Fox CL. Silver sulphadiazine: a new topical therapy for Pseudomonas aeruginosa in burns. Arch Surg 1968; 96: 184-188.   DOI   ScienceOn
22 Furr JR, Russell AD, Turner TD, Andrews A. Antimicrobial activity of Actisorb Plus, Actisorb and silver nitrate. J Hosp Infect 1994; 27: 201-208.   DOI   ScienceOn
23 Seol JW, Kang SJ, Park SY. Silver ion treatment of primary cultured bovine mammary gland epithelial cell (BMEC) damage from Staphylococcus aureus-derived $\alpha$-toxin. Vet Res Commun 2010; 34: 33-42.
24 Nover L, Scharf KD, Neumann D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 1983; 3: 1648-1655.   DOI
25 Ovington LG Battling bacteria in wound care. Home Health Nurse 2001; 19: 622-630.   DOI   ScienceOn
26 Russell AD, Hugo WB. Antimicrobial activity and action of silver. Prog Med Chem 1994; 31: 351-370.
27 Seol JW, Hur TY, Jung YH, Kang SJ, Park SY. Application of Silver Ion for Clinical Mastitis in Holstein Cows. J Vet Clin 2010; 27: 246-251.
28 Seol JW, Hur TY, Jung YH, Kang SJ, Park SY. Evaluation of Bactericidal Capacity of Silver Ion against Bovine Mastitis Pathogens. J Vet Clin 2010; 27:252-256.
29 Slawson RM, Lee H, Trevors JT. Bacterial interactions with silver. Biol Metals 1990; 3: 151-154.   DOI   ScienceOn
30 Shin HS, Yang HJ, Kim SB, Lee MS. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in $\gamma$-irradiated silver nitrate solution. J Collo Interf Sci 2004; 274: 89-94   DOI   ScienceOn
31 Wadu-Mesthrige K, Amro NA, Liu GY. Immobilization of proteins on self-assembled monolayers. Scanning 2000; 22: 380-388.
32 Watts DH, Eschenbach DA. Treatment of Chlamydia, Mycoplasma, and group B streptococcal infections. Clin Obstet Gynecol 1988; 31: 435-452.   DOI   ScienceOn
33 Wright JB, Lam K, Hansen D, Burrell RE. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Cont. 1999; 27: 344-350.   DOI   ScienceOn
34 Zhanel GG, Karlowsky JA, Davidson RJ, Hoban DJ. Effect of pooled human cerebrospinal fluid on the postantibiotic effects of cefotaxime, ciprofloxacin, and gentamicin against Escherichia coli. Antimicrob Agents Chemother 1992; 36: 1136-1139.   DOI   ScienceOn