• Title/Summary/Keyword: EFG

Search Result 75, Processing Time 0.032 seconds

Preparation and Characterization of High Density Polyethylene (HDPE)/Exfoliated Graphite (EFG) Nanocomposite Films (High Density Polyethylene (HDPE) / Exfoliated Graphite (EFG) 나노복합필름 제조와 특성에 관한 연구)

  • Kwon, Hyok;Kim, Dowan;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • Exfoliated graphite (EFG) with high aspect ratio was incorporated with high density polyethylene (HDPE) for use as high barrier packaging material such as water-sensitivity electric product and pharmaceutical packaging. Also HDPE/EFG nanocomposite films were prepared by adding the compatibilizer for effective dispersion and compatibility. Their chemical properties, crystal structure properties, thermal properties and water barrier properties of as-prepared HDPE/EFG nanocomposite films were investigated as a function of EFG contents. It showed that there is a weak interfacial interaction between HDPE and EFG, however, the water vapor permeations were decreased from 127 to 78 (70 ${\mu}m{\cdot}g/m^2$, $day{\cdot}atm$) by addition of EFG. Especially, the physical properties of HDPE/EFG nanocomposite films were effectively increased up to 0.5 wt%, however, there were no significant improvement of properties in nanocomposite films at the additional EFG loading. To maximize their performance of the nanocomposite films, further research is required to enhance the dispersion of EFG and compatibility of EFG in HDPE matrix.

  • PDF

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

An Improved Mesh-free Crack Analysis Technique Using a Singular Basis Function (특이기저함수를 이용하여 개선한 Mesh-free 균열해석기법)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.381-390
    • /
    • 2001
  • In this paper, a new improved crack analysis technique by Element-Free Galerkin(EFG) method is proposed, in which the singularity and the discontinuity of the crack successfully described by adding enrichment terms containing a singular basis function to the standard EFG approximation and a discontinuity function implemented in constructing the shape function across the crack surface. The standard EFG method requires considerable addition of nodes or modification of the model. In addition, the proposed method significantly decreases the size of system of equation compared to the previous enriched EFG method by using localized enrichment region near the crack tip. Numerical example show the improvement and th effectiveness of the previous method.

  • PDF

Water Sorption Behaviors of Poly(Propylene Carbonate)/Exfoliated Graphite Nanocomposite Films (폴리프로필렌 카보네이트/박리흑연 나노복합필름의 수분흡수 거동)

  • Kim, Dowan;Kim, Insoo;Seo, Jongchul;Han, Haksoo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.621-627
    • /
    • 2013
  • In order to apply eco-friendly poly(propylene carbonate) (PPC) into barrier packaging materials, six different PPC/exfoliated graphite (EFG) nanocomposite films with different EFG were successfully prepared by a solution blending method. Their water sorption behavior was gravimetrically investigated as a function of the EFG content and interpreted with respect to their chemical structure and morphology. The water sorption isotherms were reasonably well fitted by Fickian diffusion model, regardless of morphological heterogeneities. With increasing the EFG content, the diffusion coefficient and water uptake decreased from $12.5{\times}10^{-10}cm^2sec^{-1}$ to $7.2{\times}10^{-10}cm^2sec^{-1}$ and from 8.9 wt% to 4.2 wt%, respectively, which indicates that the moisture resistance capacity of PPC was greatly enhanced by incorporating EFG into PPC. The enhanced water barrier property of the PPC/EFG nanocomposite films with the high aspect ratio EFG makes them potential candidates for versatile packaging applications. However, to maximize the performance of the nanocomposite films, further researches are required to increase the compatibility of EFG in the PPC matrix.

A Comparative Study on Coupling of Element-free Galerkin Method and Infinite Element by IE's Shape Function (무한요소 형상함수에 따른 무요소법과의 조합 방법 비교 연구)

  • 이상호;김명원;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.279-287
    • /
    • 2003
  • This paper deals with a comparative study on coupling of Element-free Galerkin(EFG) method and Infinite Element(IE) by IE's shape function. In this study, mapped infinite elements(mapped IE) and decay function infinite elements(decay IE) are coupled with the EFG method. A coupling procedure of EFG-Mapped IE is much easier to be integrated than a coupled EFG-Decay IE. A coupled EFG-IE method used well-defined functions to preserve the continuity and linear consistency on the interface of the EFG region and IE region. Several benchmark problems are solved to verify the effectiveness and accuracy of the coupling algorithms by IE's shape function. The numerical results show that the developed algorithms work well for the elastic problems with infinite boundaries.

  • PDF

Combination of Element-Free Galerkin Method and Infinite Elements (무요소법과 무한요소의 결합에 관한 연구)

  • 이상호;김태연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.76-83
    • /
    • 2001
  • In this study, a new method coupling of Element-Free Galerkin(EFG) method and Infinite Elements(IE) method is presented for extending application of the EFG method to engineering problems in unbounded domain. EFG method and IE method are briefly reviewed, and then the coupling procedure of the two methods is proposed. Numerical Algorithm by way of EFG-lE coupling technique is also developed. Numerical results illustrate the performance of the proposed technique. The accuracy of numerical solutions by the developed algorithm is guaranteed in comparing those of the other methods.

  • PDF

A Study on the Analysis Parameter Used in Improved EFG Crack Analysis Technique Based on Error Estimate (오차분석을 통한 개선된 EFG 균열해석기법의 해석계수 영향평가)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.703-713
    • /
    • 2002
  • Recently, an improved EFG(Element-Free Galerkin) crack analysis technique, which includes a discontinuous approximation and a singular basis function on the auxiliary supports, was developed. The technique is able to accurately analyze the crack propagation problem without any modification of the analysis model; however, it shows some dependency on the analysis parameters used. In this study, the effect of analysis parameters such as the size of compact support, dilation parameter, the smoothness of shape function around the crack tip, and the number of node using auxiliary supports on the accuracy of solution has been investigated. Through a patch test with a crack, relative L₂ error norm of stresses and the stress intensity factor were computed and compared for various analysis parameters and the results were presented as guidelines for adequate choice of analysis parameters.