Browse > Article
http://dx.doi.org/10.14478/ace.2013.1082

Water Sorption Behaviors of Poly(Propylene Carbonate)/Exfoliated Graphite Nanocomposite Films  

Kim, Dowan (Department of Packaging, Yonsei University)
Kim, Insoo (Department of Packaging, Yonsei University)
Seo, Jongchul (Department of Packaging, Yonsei University)
Han, Haksoo (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Applied Chemistry for Engineering / v.24, no.6, 2013 , pp. 621-627 More about this Journal
Abstract
In order to apply eco-friendly poly(propylene carbonate) (PPC) into barrier packaging materials, six different PPC/exfoliated graphite (EFG) nanocomposite films with different EFG were successfully prepared by a solution blending method. Their water sorption behavior was gravimetrically investigated as a function of the EFG content and interpreted with respect to their chemical structure and morphology. The water sorption isotherms were reasonably well fitted by Fickian diffusion model, regardless of morphological heterogeneities. With increasing the EFG content, the diffusion coefficient and water uptake decreased from $12.5{\times}10^{-10}cm^2sec^{-1}$ to $7.2{\times}10^{-10}cm^2sec^{-1}$ and from 8.9 wt% to 4.2 wt%, respectively, which indicates that the moisture resistance capacity of PPC was greatly enhanced by incorporating EFG into PPC. The enhanced water barrier property of the PPC/EFG nanocomposite films with the high aspect ratio EFG makes them potential candidates for versatile packaging applications. However, to maximize the performance of the nanocomposite films, further researches are required to increase the compatibility of EFG in the PPC matrix.
Keywords
poly(propylene carbonate); exfoliated graphite; nanocomposite; water sorption; chemical structure; morphology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Qin, X. Wang, and F. Wang, Recent advances in carbon dioxide based copolymer, Prog. Chem., 23, 613-622 (2011).
2 Y. Qin and X. Wang, Carbon dioxide-based copolymers: Environmental benefits of PPC, an industrially viable catalyst, J. Biotech., 5, 1164-1180 (2010).   DOI   ScienceOn
3 R. Eberhardt, M. Allmendinger, and B. Rieger, DMAP/Cr(III) catalyst ratio: The decisive factor for poly(propylene carbonate) formation in the coupling of $CO_{2}$ and propylene oxide, Macromol. Rapid Comm., 24, 194-196 (2003).   DOI   ScienceOn
4 S. Inoue and T. Tsuruta, Synthesis and thermal degradation of carbon dioxide-epoxidecopolymer, Appl. Polym. Symp., 26, 257-267 (1975).
5 B. Ochiaiand and T. Endo, Carbon dioxide and carbon disulfide as resources for functional polymers, Prog. Polym. Sci., 30, 183-215 (2005).   DOI   ScienceOn
6 G. A. Auinsra, Poly(Propylene Carbonate), old copolymersof propyleneoxide and carbon dioxidewith new Interests: Catalysis and materialproperties, Polym. Rev., 48, 192-219 (2008).   DOI   ScienceOn
7 S. Sujith, J. K. Min, J. E. Seong, S. J. Na, and B. Y. Lee, A Highly active and recyclable catalytic system for $CO_{2}$/propyleneoxide copolymerization, Angew. Chem. Int. Ed., 47, 7306-7309 (2008).   DOI   ScienceOn
8 X. Shi and Z. Gan, Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation, Europ. Polym. J., 43, 4852-4858 (2007).   DOI   ScienceOn
9 Y. Lee, D. Kim, J. Seo, H. Han, and S. B. Khan, Preparation and characterization of poly(propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties, Polym. Int., 62, 1386-1394 (2013).   DOI   ScienceOn
10 G. A. Luinstra and E. Borchardt, Material properties of poly(propylenecarbonates), Adv. Polym. Sci., 245, 29-48 (2012).
11 J. Yu, J. Yang, B. Liu, and X. Ma, Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulosesodium nanocomposites, Bioresour. Technol., 100, 2832-2841 (2009).   DOI   ScienceOn
12 S. K. Bajpai and C. N. Chaurasia, Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles- loaded chitosan-based edible film, J. Appl. Polym. Sci., 115, 674-683 (2010).   DOI   ScienceOn
13 S. M. E. Selke, J. D. Sem, J. D. Culter, and R. Z. Hernandez, Plastic Packaging; Properties, Processing, Applications, and Regulations. 78-350, Hanser Gardner Publication, Munich, Germany (2004).
14 M. Xiao, L. Sun, J. J. Liu, Y. Li, and K. Gong, Synthesis and properties of polystyrene/graphite nanocomposites, Polymer, 43, 2245-2248 (2002).   DOI   ScienceOn
15 H. Kwon, D. Kim, J. Seo, and H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromol. Res., 21, 987-994 (2013).   DOI   ScienceOn
16 I. M. Afanasov, V. Morozov, A. Kepman, S. Ionov, and A. Seleznev, Preparation, electrical and thermal properties of new exfoliated graphite-based composites, Carbon, 47, 263-270 (2009).   DOI   ScienceOn
17 A. Nigrawal and N. Chand, Electrical and thermal investigations on exfoliated graphite filled epoxygradient composites, Malaysian Polym. J., 5, 130-139 (2010).
18 J. M. Lagaron and E. Nunez, Nanocomposites of moisture-sensitive polymers and biopolymers with enhanced performance for flexible packaging applications, J. Plast. Film Sheet., 28, 79-89 (2012).   DOI   ScienceOn
19 K. Wakabayashi, P. J. Brunner, J. Masuda, S. A. Hewlett, and J. M. Torkelson, Polypropylene-graphite nanocomposites made by solid-state shear pulverization: Effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties, Polymer, 51, 5525-5531 (2010).   DOI   ScienceOn
20 E. J. Lee, J. S. Yoon, and E. S. Park, Morphology, resistivity, and thermal behavior of EVOH/carbon black and EVOH/graphite composites prepared by simple saponification method, Polym. Compos., 32, 714-726 (2011).   DOI   ScienceOn
21 T. V. Ducan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors, J. Coll. Interf. Sci., 363, 1-24 (2011).   DOI   ScienceOn
22 W. Gu, W. Zhang, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, F. Kang, and D. Wu, Graphene sheets from worm-like exfoliated graphite, J. Mater. Chem., 19, 3367-3369 (2009).   DOI   ScienceOn
23 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009).   DOI   ScienceOn
24 H. Kim, A. A. Abdala, and C. W. Macosko, Graphene/polymer nanocomposites, Macromolecules, 43, 6515-6530 (2010).   DOI   ScienceOn
25 J. Wang, X. Wang, C. Xu, M. Zhang, and X. Shang, Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance, Polym. Int., 60, 816-822 (2010).
26 D. W. van Krevelen, Properties of Polymers 3rd Ed. Elseviers Science Publishing Com., Amsterdam, Nederland (1990).
27 J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011).   DOI   ScienceOn
28 J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, UK (1976).
29 J. Crank and G. S. Park, Diffusion in Polymers, Academic Press, London, UK (1968).
30 J. Seo, C. Han, and H. Han, Water-sorption behaviors of poly(3,4'- oxydiphenylene pyromellitimide) films depending on the thickness variation, J. Polym. Sci. Polym. Phys., 39, 669-676 (2001).   DOI   ScienceOn