• Title/Summary/Keyword: EEG spectral analysis

Search Result 85, Processing Time 0.026 seconds

Linear/Non-Linear Tools and Their Applications to Sleep EEG : Spectral, Detrended Fluctuation, and Synchrony Analyses (컴퓨터를 이용한 수면 뇌파 분석 : 스펙트럼, 비경향 변동, 동기화 분석 예시)

  • Kim, Jong-Won
    • Sleep Medicine and Psychophysiology
    • /
    • v.15 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Sleep is an essential process maintaining the life cycle of the human. In parallel with physiological, cognitive, subjective, and behavioral changes that take place during the sleep, there are remarkable changes in the electroencephalogram (EEG) that reflect the underlying electro-physiological activity of the brain. However, analyzing EEG and relating the results to clinical observations is often very hard due to the complexity and a huge data amount. In this article, I introduce several linear and non-linear tools, developed to analyze a huge time series data in many scientific researches, and apply them to EEG to characterize various sleep states. In particular, the spectral analysis, detrended fluctuation analysis (DFA), and synchrony analysis are administered to EEG recorded during nocturnal polysomnography (NPSG) processes and daytime multiple sleep latency tests (MSLT). I report that 1) sleep stages could be differentiated by the spectral analysis and the DFA ; 2) the gradual transition from Wake to Sleep during the sleep onset could be illustrated by the spectral analysis and the DFA ; 3) electrophysiological properties of narcolepsy could be characterized by the DFA ; 4) hypnic jerks (sleep starts) could be quantified by the synchrony analysis.

  • PDF

A Study on the Real-time Electroencephalography analysis (실시간 뇌파분석에 관한 연구)

  • Song, J.S.;Yoo, S.K.;Kim, S.H.;Kim, N.H.;Kim, K.M.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.278-281
    • /
    • 1995
  • In this paper, we have developed EEG (electroencephalography) analyzer for monitoring the condition of brain in neurological surgery. This system is composed of EEG amplifier. personal-computer and BSP (Digital Signal Processor). By parallel processing of DSP, this system can analysis the power spectral density change of EEG in real-time and display the CSA(Compressed Spectral Array) and CDSA(Color Density Spectral array) of EEG. This system was tested by real EEG and showed the change of EEG.

  • PDF

Pattern Recognition of Human Grasping Operations Based on EEG

  • Zhang Xiao Dong;Choi Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.592-600
    • /
    • 2006
  • The pattern recognition of the complicated grasping operation based on electroencephalography (simply named as EEG) is very helpful on realtime control of the robotic hand. In the paper, a new spectral feature analysis method based on Band Pass Filter (simply named as BPF) and Power Spectral Analysis (simply named as PSA) is presented for discriminating the complicated grasping operations. By analyzing the spectral features of grasping operations with the use of the two-channel EEG measurement system and the pattern recognition of the BP neural network, the degree of recognition by the traditional spectral feature method based on FFT and the new spectral features method based on BPF and PSA could be compared. The results show that the proposed method provides highly improved performance than the traditional one because the new method has two obvious advantages such as high recognition capability and the fast learning speed.

Implementation of EEG Artifact Removal Process Based on Bispectrum Analysis (바이스펙트럼 분석 기반의 뇌파 Artifact 제거 프로세스 구현)

  • Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • In this study, bispectrum analysis method introduced to reduce variability of SEF(spectral edge frequency) and MF(median frequency), which are the anesthetic depth indexes extracted by EEG spectral analysis. Bispectrum analysis is an analytical method that can confirm the nonlinearity of EEG. Signal measurement and analysis in the surgical environment should take into consideration various external artifact factors. Bispectrum analysis can confirm the presence of externally introduced artifacts, thereby effectively eliminating artifacts that affect the EEG signal. By applying bispectrum parameters, real-time variability of the anesthetic depth parameters SEF, MF could be reduced. Elimination of variability makes it possible to use SEF, MF as a real-time index during surgery.

Power spectrum density analysis for the influence of complete denture on the brain function of edentulous patients - pilot study

  • Perumal, Praveen;Chander, Gopi Naveen;Anitha, Kuttae Viswanathan;Reddy, Jetti Ramesh;Muthukumar, Balasubramanium
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.187-193
    • /
    • 2016
  • PURPOSE. This pilot study was to find the influence of complete denture on the brain activity and cognitive function of edentulous patients measured through Electroencephalogram (EEG) signals. MATERIALS AND METHODS. The study recruited 20 patients aged from 50 to 60 years requiring complete dentures with inclusion and exclusion criteria. The brain function and cognitive function were analyzed with a mental state questionnaire and a 15-minute analysis of power spectral density of EEG alpha waves. The analysis included edentulous phase and post denture insertion adaptive phase, each done before and after chewing. The results obtained were statistically evaluated. RESULTS. Power Spectral Density (PSD) values increased from edentulous phase to post denture insertion adaption phase. The data were grouped as edentulous phase before chewing (EEG p1-0.0064), edentulous phase after chewing (EEG p2-0.0073), post denture insertion adaptive phase before chewing (EEG p3-0.0077), and post denture insertion adaptive phase after chewing (EEG p4-0.0096). The acquired values were statistically analyzed using paired t-test, which showed statistically significant results (P<.05). CONCLUSION. This pilot study showed functional improvement in brain function of edentulous patients with complete dentures rehabilitation.

Relation between heart rate variability and spectral analysis of electroencephalogram in chronic neuropathic pain patients

  • John Rajan;Girwar Singh Gaur;Karthik Shanmugavel;Adinarayanan S
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.253-264
    • /
    • 2024
  • Chronic neuropathic pain (CNP) is a complex condition often arising from neural maladaptation after nerve injury. Understanding CNP complications involves the intricate interplay between brain-heart dynamics, assessed through quantitative electroencephalogram (qEEG) and heart rate variability (HRV). However, insights into their interaction in chronic pain are limited. Resting EEG and simultaneous electrocardiogram (lead II) of the participants were recorded for qEEG and HRV analysis. Correlations between HRV and qEEG parameters were calculated and compared with age, sex, and body mass index (BMI)-matched controls. CNP patients showed reduced HRV and significant increases in qEEG power spectral densities within delta, theta, and beta frequency ranges. A positive correlation was found between low frequency/high frequency (LF/HF) ratio in HRV analysis and theta, alpha, and beta frequency bands in qEEG among CNP patients. However, no significant correlation was observed between parasympathetic indices and theta, beta bands in qEEG within CNP group, unlike age, sex, and BMI-matched healthy controls. CNP patients display significant HRV reductions and distinctive qEEG patterns. While healthy controls exhibit significant correlations between parasympathetic HRV parameters and qEEG spectral densities, these relationships are diminished or absent in CNP individuals. LF/HF ratio, reflecting sympathovagal balance, correlates significantly with qEEG frequency bands (theta, alpha, beta), illuminating autonomic dysregulation in CNP. These findings emphasize the intricate brain-heart interplay in chronic pain, warranting further exploration.

The Application of Quantitative Electroencephalography (Spectral Edge Frequency 95) to Evaluate Sedation in Dogs (개에서 진정 평가를 위한 정량적 뇌파검사의 적용)

  • Kim Min-Su;Nam Tchi-Chou
    • Journal of Veterinary Clinics
    • /
    • v.23 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • This study was performed to evaluate sedation with quantitative electroencephalography (EEG) analysis in dogs. EEG is used to evaluate objectively the effects of CNS acting with brain and behavioral changes. Especially, spectral edge frequency 95 (SEF 95) parameter is an effective method to determine the sedative status. The SEF 95 is the frequency below 95% of the total power. Twelve healthy intact male Miniature Schnauzer dogs, which did not show any neurological abnormalities and disease, were used for the study. EEG electrodes were inserted in subcutaneous tissue over the calvaria without entering adjacent muscles. The EEG data were acquired and analyzed by EEG raw wave and spectral edge frequency 95 analysis. After the administration of sedatives, the SEF 95 values were shown the significant changes compared with the normal state In all groups (p<0.05). It is suggested that SEF 95 analysis is useful method for assessing the state of sedation in dogs.

Spectral Estimation of EEG signal by AR Model (AR 모델을 이용한 뇌파신호의 스펙트럼 추정)

  • Ryo, D.K.;Kim, T.S.;Huh, J.M.;Yoo, S.K.;Park, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.114-117
    • /
    • 1990
  • EEG signal is analyzed by two methods, analysis by visual inspection of EEG recording sheets and analysis by quantative method. Generally visual inspection method is used in the clinical field. But this method has its limitation because EEG signal is random signal. Therefore it is necessary to analyze EEG signals quantatively to obtain more precise and objective information of neural and brain. In this paper, power spectrum of EEG signal was estimated by AR(AutoRegressive) model in the frequency domain. This process is useful as a preprocessing stage for tomographic brain mapping (TBM) at each frequency, band. As a method for estimating power spectral density of EEG signals, periodogram method, autocorrelation method. covariance method, modified covariance method, and Burg method are tested in this paper.

  • PDF

Spectral analysis of brain oscillatory activity (뇌파의 주파수축 분석법)

  • Min, Byoung-Kyong
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.2
    • /
    • pp.155-181
    • /
    • 2009
  • Psychophysiologists are often interested in the EEG signals that accompany certain psychological events. When one is interested in a time series of event-related changes in EEG, one focuses on examining how the waveforms recorded at individual electrode sites vary over time across one or more experimental conditions. This is an analysis of event-related potentials (ERPs). In addition to such a classical EEG analysis in the time domain, the EEG measures can be investigated in the frequency domain. Moreover, it has been demonstrated that spectral analyses can often yield significant insight into the functional cognitive correlations of the signals. Therefore, this review paper tries to summarize essential concepts (e.g. phase-locking) and conventional methods (e.g. wavelet transformation) for understanding spectral analyses of brain oscillatory activity. Phase-coherence is also introduced in relation to functional connectivity of the brain.

  • PDF

Dual deep neural network-based classifiers to detect experimental seizures

  • Jang, Hyun-Jong;Cho, Kyung-Ok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 2019
  • Manually reviewing electroencephalograms (EEGs) is labor-intensive and demands automated seizure detection systems. To construct an efficient and robust event detector for experimental seizures from continuous EEG monitoring, we combined spectral analysis and deep neural networks. A deep neural network was trained to discriminate periodograms of 5-sec EEG segments from annotated convulsive seizures and the pre- and post-EEG segments. To use the entire EEG for training, a second network was trained with non-seizure EEGs that were misclassified as seizures by the first network. By sequentially applying the dual deep neural networks and simple pre- and post-processing, our autodetector identified all seizure events in 4,272 h of test EEG traces, with only 6 false positive events, corresponding to 100% sensitivity and 98% positive predictive value. Moreover, with pre-processing to reduce the computational burden, scanning and classifying 8,977 h of training and test EEG datasets took only 2.28 h with a personal computer. These results demonstrate that combining a basic feature extractor with dual deep neural networks and rule-based pre- and post-processing can detect convulsive seizures with great accuracy and low computational burden, highlighting the feasibility of our automated seizure detection algorithm.