• Title/Summary/Keyword: EDDC

Search Result 18, Processing Time 0.027 seconds

EDDC deposition system for 100m long superconducting coated conductor (100m 급 초전도선재 제조용 EDDC 증착시스템)

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Ko, Rock-Kil;Yang, Ju-Saeng;Kim, Tae-Hyung;Song, Kyu-Jeong;Ha, Dong-Woo;Park, Yu-Mi;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.18-19
    • /
    • 2005
  • EDDC(Evaporation using Drum in Dual Chamber) deposition system was manufactured for 100m long superconducting coated conductor. It is composed of reaction chamber, evaporation chamber and differential chamber. The drum is located across the differential and exposed to both of the evaporation chamber and the reaction chamber, and the tape is wound on the drum. The elements of superconducting material are co-evaporated from respective element boats in the evaporation chamber and deposited on the drum and reacted with oxygen in the reaction chamber. This process repeats by rotating the drum. When the total pressure of the reaction chamber was 5 mTorr, that of the evaporation chamber was $5{\sim}10^{-5}$Torr. This atmosphere can be achieved by means of differential pumping. There are four evaporator in the evaporation chamber. One is the radiation heating evaporator and the others are the high frequency induction evaporator. EDDC is one of promising methods for commercialization of superconducting coated conductor.

  • PDF

A Study on Electronic Dewey, the CD-ROM version of DDC (Electronic Dewey의 이용에 관한 연구)

  • 정연경;이선경
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1996.08a
    • /
    • pp.63-66
    • /
    • 1996
  • DDC는 1876년 멜빌 듀이에 의해 초판이 발행된 이후 21판의 개정판이 출판될 예정이며, 현재 전세계적으로 널리 사용되고 있는 세계적인 분류표이다. 이러한 DDC는 이제 인쇄본 형태뿐만이 아니라 기계가독형 형태인 CD-ROM으로까지 생산되기에 이르렀다. 본고에서는 DDC 최초의 기계가독형 형태인 Electronic Dewey Decimal Classification(EDDC)에 대해 살펴보고, 이를 실제로 사용해 본 학생들을 대상으로 조사한 설문지 결과를 중심으로 EDDC의 이용 가능성과 그에 필요한 여건에 관해 논하였다.

  • PDF

Angular dependence of critical current of SmBCO coated conductor fabricated by co-evaporation method

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Song, Kyu-Jeong;Ko, Rock-Kil;Ha, Dong-Woo;Kim, Tae-Hyung;Youm, Do-Jun;Lee, Nam-Jin;Moon, Seung-Hyun;Yoo, Sang-Im;Park, Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.16-19
    • /
    • 2008
  • Angular dependence of critical current density of SmBCO coated conductor fabricated by co-evaporation method was investigated. For comparison, three samples were fabricated by a co-evaporation method and one sample was fabricated by a pulsed laser deposition process. The deposition system, named EDDC (Evaporation using Drum in Dual Chambers), is a batch type co-evaporation system, which is composed of reaction chamber and evaporation chamber. The normalized critical current density ratio ($I_c/I_c$(H//ab-plane)) of EDDC-SmBCO samples was found to be higher than that of PLD-YBCO sample in the whole range of angle. While the EDDC-SmBCO samples evidently had a peak at the angle of H//c-axis in the plot of the angular dependence of critical current, the normalized critical current of PLD-YBCO sample decreased monotonically without any peak as angle increased. The field dependence of critical current under the magnetic field parallel to the normal direction of those samples showed similar aspect in the range of $0\;G{\sim}5000\;G$.

Effects of Sm:Ba:Cu Composition Ratio on the Superconducting Properties of SmBCO Coated Conductor Prepared by using a Composition Gradient Method (SmBCO 초전도 선재 특성에 대한 Sm:Ba:Cu 조성비의 영향)

  • Kim, H.S.;Oh, S.S.;Jang, S.H.;Min, C.H.;Ha, H.S.;Ha, D.W.;Ko, R.K.;Youm, D.J.;Moon, S.H.;Chung, K.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • The effects of Sm:Ba:Cu composition ratio in SmBCO coated conductor on their superconducting properties were investigated. The SmBCO coated conductors were fabricated by reactive co-evaporation method using EDDC(Evaporation using Drum in Dual Chamber) system. In this system, we could obtain various samples with different composition ratios in a batch by the technique providing composition gradient at deposition zone. From the specimens prepared by EDDC system, we found that composition ratio is uniform parallel to the drum axis, but gradient along the circumferential direction of the drum. We installed a shield having parallelogram open area between the deposition chamber and the evaporation chamber in EDDC system, and attached a 30 cm long template, which is parallel to drum axis, onto the drum surface. In this configuration, we could obtain SmBCO coated conductors having a gradient composition along the length of template. We measured the composition ratios and surface morphologies with periodic interval by SEM and EDAX, and confirmed the profile of composition ratio. We also measured critical current using non-contact Hall probe critical current measurement system and thereby could plot composition ratio vs. critical current. The maximum critical current was obtained, and the surface morphology with the shape of roof tile was observed at the corresponding composition ratio of Sm:Ba:Cu = 1.01:1.99:4.87. It was also found that composition ratio had an effect on not only critical current but also surface morphology.

Fabrication of SmBCO superconducting coated conductor using 100m class batch-type co-evaporation method (100m 급 batch-type co-evaporation 증착장치를 이용한 SmBCO 초전도테이프 제조)

  • Kim, H.S.;Oh, S.S.;Ha, H.S.;Yang, J.S.;Kim, T.H.;Lee, N.J.;Jeong, Y.H.;Ko, R.K.;Song, K.J.;Ha, D.W.;Youm, D.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.24-25
    • /
    • 2006
  • SmBCO coated conductors were successfully fabricated using EDDC (Evaporation using Drum in Dual Chambers) deposition system that is a bath type co-evaporation system for fabrication of superconducting tape and divided into two chambers named evaporation chamber and reaction chamber. To obtain long and high quality superconducting coated conductor, it is very important to secure the uniformity of all the deposition parameters m the deposition system such as deposition temperature, oxygen partial pressure, compositional ratios and so on. Therefore, we investigated the distribution of the parameters along the axis of the drum m EDDC on which tapes were wound helically. When the temperature on the middle point of deposition zone was $700^{\circ}C$, that on the edge of deposition zone was $675^{\circ}C$. When the thickness of SmBCO layer on the middle point of deposition zone was 1063 nm, that on the edge of deposition zone was 899 nm. The partial pressure of oxygen was 5 mTorr in the reaction chamber while that was $7{\times}10^{-5}$Torr in the evaporation chamber. The composition ratio of Sm:Ba:Cu, that was measured by EDX, was very uniform along the axis of the drum. Under these deposition conditions, critical current distribution along the drum axis was 175 A/cm, 190A/cm, 217.5 A/cm, 182.5 A/cm, 175 A/cm with the interval of 9 cm between samples. It means that the EDDC system has the potential of fabricating (100m, 200A) class coated conductor.

  • PDF

SmBCO superconducting tape fabricated using co-evaporation method on Ni-W substrate (Ni-W 기판 위에 동시증발법으로 제조한 SmBCO 초전도선재)

  • Oh S.S.;Kim H.S.;Ha H.S.;Ko R.K.;Song K.J.;Ha D.W.;Lee N.J.;Yang J.S.;Kim T.H.;Jeong Y.H.;Youm D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.9-12
    • /
    • 2006
  • Batch type co-evaporation EDDC (Evaporation using Drum in Dual Chambers) system was recently manufactured to fabricate 100m - long SmBCO superconducting coated conductor. As a preliminary study before the fabrication of long tape. short CC samples have been fabricated using the EDDC system and their crystal texture and $I_c$ properties were investigated. $1.2 {\mu}m$-thick SmBCO layers were deposited on $CeO_2/YSZ/CeO_2$ buffered Ni-W tapes. $I_c$ of 128A/cm-w and corresponding $J_c$ of $1.1 MA/cm^2$ at 77K in self-field were obtained for SmBCO CC tape. In-field property of SmBCO CC was confirmed to be better than that of YBCO deposited by PLD.

$CeO_2$ Single Buffer Deposition on RABiTS for SmBCO Coated Conductor

  • Kim, T.H.;Kim, H.S.;Ha, H.S.;Yang, J.S.;Lee, N.J.;Ha, D.W.;Oh, S.S.;Song, K.J.;Jung, Y.H.;Pa, K.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.180-181
    • /
    • 2006
  • As a rule, high temperature superconducting coated conductors have multi-layered buffers consisting of seed, diffusion barrier and cap layers. Multi-buffer layer deposition requires longer fabrication time. This is one of main reasons which increases fabrication cost Thus, single buffer layer deposition seems to be important for practical coated conductor process. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique 100nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $0.4{\mu}m$-thick SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-W substrate. Critical current of 118A/$cm^2$ was obtained for the SmBCO coated conductors.

  • PDF

Study on soldering process of SmBCO coated conductor for lamination (SmBCO 박막형 초전도 테이프의 lamination 공정을 위한 soldering 연구)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Oh, Jae-Gn;Kim, Ho-Sup;Ha, Hong-Soo;Goh, Rak-Kil;Song, Gyung-Jung;Lee, Nam-Jin;Yang, Joo-Saeng;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.236-237
    • /
    • 2007
  • Lamination of coated conductor is important to commercialize for electrical stabilizer and mechanical support. It should be known the properties of soldering interface and the variation of superconductivity on coated conductor with various kinds of solders. $SmBa_2Cu_O_x$ thin films were deposited by co-evaporation method (EDDC, Evaporation using Drum in Dual Chambers). 4 kinds of solders were used to investigate interface properties of SmBCO conductors. In-Bi solder could maintain good connection.

  • PDF