INVITED

High Temperature Superconductor 2nd Generation Wire Fabricated by IBAD and Reactive Co-evaporation Method

S. H. Moon^a, H. K. Kim^a, K. K. Yoo^a, J. S. Yang^a, S. U. Jeong^a, H. J. Lee^a,

H. S. Ha^b, H. S. Kim^b, R. K. Ko^b, N. J. Lee^b, K. J. Song^b, D. W. Ha^b, S. S. Oh^b,

K. P. Ko^c, S. I. Yoo^c, Y. H. Jung^d, D. Youm^d

^a SuNAM Co Ltd. , Anyang, Korea

^b Korea Electricity Research Institute, Changwon, Korea ^c Seoul National University, Seoul, Korea ^c Korea Advanced Institute of Science and Technology, Taejeon, Korea

High Temperature superconductor (HTS) 2nd generation (2G) wire is a key element for advanced superconducting electric power system such as power cable, motor and transformer. HTS 2G wire's various physical properties – critical current density, mechanical strength, upper critical field – are superior to 1G wire, but still relatively high cost is an obstacle to real applications. We have made a long length 2G wire with high speed cost effective methods. Long length template tapes with architecture of epi-MgO/IBAD-MgO/Y₂O₃/Al₂O₃ were fabricated on hastelloy metal substrate using IBAD system with multi-turn reel-to-reel device with the effective speed of 600 m/hr. LaMnO₃ buffer was deposited using pulsed laser deposition (PLD). 300 m-long IBAD-MgO template tape was successfully fabricated and a good in-plane texture with the FWHM of $6 \sim 6.5^{\circ}$ was confirmed. Reactive co-evaporation process using batch type EDDC (Evaporation using Drum in Dual Chambers) system was selected to scale-up HTS 2G wire. A higher production speed is realized due to wider deposition range and fast cyclic conversion process in the system. In addition to this, a lower material cost is expected because metal sources are used instead of high price metal-precursor. Evaporated atoms are deposited on template tape, which was wound on metal drum, and the deposited part of the tape passes through high temperature region with oxygen partial pressure of 5 to 20 mTorr in reaction chamber by the rotating drum. SmBCO was selected for the superconducting material because it is widely known to have superior in-field property of J_c, wider deposition window and relatively low cost law material compared with YBCO. In order to get the high I_c SmBCO film, the experimental parameters of deposition rate, reaction temperature and oxygen partial pressure in reaction chamber were varied. 93 m-long SmBCO coated conductor with 4 mm-width was fabricated using IBAD-PLD-EDDC systems and protection Ag layer was coated by dc sputtering. Critical currents at 77 K in self field were measured on the 1 to 5 m -long sections of the tape. The I_c over 500 A/cm was obtained for the 1 m-long tape. I_c of $305 \sim 412$ A/cm was confirmed in the 27 m-long tape.

keywords : HTS 2G wire, IBAD, EDDC, MgO, SmBCO

This research was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, South Korea.