• Title/Summary/Keyword: ECU evaluation system

Search Result 18, Processing Time 0.031 seconds

Hardware-In-the-Loop Simulation of ECU using Reverse Engineering (역공학을 이용한 ECU의 Hardware-In-the-Loop Simulation)

  • Park, Ji-Myoung;Ham, Won-Kyung;Ko, Min-Suk;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Increasing the proportion of an embedded system in automotive industry, test methods for evaluation and fault detection of the embedded system have been researched. HILS is a test method that is used in the development and test of complex real-time embedded systems. In this study, we defined the HILS method of the ECU, one of the embedded systems used in automobiles. Our method is to create a test model that can provide a virtual vehicle environment to the ECU on the basis of the actual vehicle data. The test model has reference information that can transmit the sensor signal and CAN Message into the ECU from HILS tester. In this study, the HILS can detect faults of the target ECU.

Performance Evaluation of a Suspension Seat Controller Using ECU-in-the-Loop Simulation (ECU-in-the Loop Simulation을 사용한 운전석 현가제어기의 성능평가)

  • Baek, Woon-Kyung;Lee, Ji-Woong;Lee, Jong-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1170-1178
    • /
    • 2007
  • Repeated hardware tests and tuning, investing cost and time, are usually required to assure a satisfactory performance of the suspension seat. In this study, an EILS(ECU-in-the-loop) method was proposed to develop a controller for a semi-active suspension seat with a MR(magneto-rheological) damper. EILS system was developed using a real-time seat dynamics model communicating with ECU hardwares under a closed loop environment utilizing Matlab/Simulink and xPC $TargetBox^{TM}$. A sky-hook based control algorithm with optimized damping coefficients was verified to reduce the energy consumption and to improve the vibration response performance.

Development of Engine ECU_ILS System for Diesel Engine of Commercial Vehicle (상용차용 디젤엔진의 Engine ECU_ILS 시스템 개발)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.35-43
    • /
    • 2014
  • The automobile industry requires technological innovations to reduce fuel consumption with the public interest in environmental conservation in recent years. Thus, the hybrid system is applied not only to passenger cars but also commercial vehicles. The purpose of this paper is to develop engine ECU_ILS to develop commercial hybrid vehicles. In order to develop the engine and vehicle, the dynamometer and exhaust gas analyzer is needed. However, a lot of time and cost are required. In contrast, the model-based development environment that can be applied to a variety of test conditions can reduce development time. Therefore, a HILS system environment that can consider the behavior of actual vehicles for evaluation of the control logic, fuel consumption and exhaust gas is required. This engine ECU_ILS system was developed in this study, can analyze parameter such as the fuel injection rate, fuel injection time, fuel consumption and exhaust gas like the actual vehicle test using map data. Also, this system is expected to be able to analyze the characteristic of vehicle behavior and the development of peripheral device in relation to engine and vehicles. This HILS system can be used to develop control strategies of commercial hybrid vehicle systems in the future.

Design of a Full-range Adaptive Cruise Control Algorithm with Collision Avoidance (전구간 주행 및 충돌회피 제어 알고리즘 설계)

  • Moon, Seung-Wuk;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.849-854
    • /
    • 2007
  • This paper describes design and tuning of a full-range Adaptive Cruise Control (ACC) with collision avoidance. The control scheme is designed to control the vehicle so that it would feel natural to the human driver and passengers during normal safe driving situations and to avoid rear-end collision in vehicle following situations. In this study, driving situations are determined using a non-dimensional warning index and time-to-collision (TTC). A confusion matrix method based on natural driving data sets was used to tune control parameters in the proposed ACC System. An ECU-Brake Hardware-in-the-loop Simulation (HiLS) was developed and used for an evaluation of ACC System. The ECU-Brake HiLS results for alternative driving situation are compared to manual driving data measured on actual traffic way. The ACC/CA control logic implemented in an ECU was tested using the ECU-Brake HiLS in a real vehicle environment.

  • PDF

Development of HILS System for Performance Analysis of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 개발)

  • 황돈하;이기창;전정우;김용주;조정목;조중선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.898-906
    • /
    • 2002
  • Antilock Brake System (ABS) is designed to prevent wheels from being locked-up under emergency braking of a vehicle. Therefore it improves directional stability of the vehicle, shortens stopping distance, and enhances maneuvering during braking, regardless of road conditions. Hardware In-the-Loop Simulation (HILS) is an effective tool for design Performance evaluation and test of vehicle subsystems such as ABS, active suspension, and steering systems. This paper describes a HILS model for ABS/ ASR(Acceleration Slip Regulation) system applications. A fourteen degrees-of-freedom vehicle dynamics model is simulated in an alpha-chip processor board. The proposed HILS system is tested with a basic ABS control algorithm. The design and implementation of HILS system for the ABS ECU(Electronic Control Unit) development of commercial vehicle are presented. The results show that the proposed HILS system can be used to test the performance, stability, and reliability of a vehicle under braking.

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

Implementation and Design of HILS for Development of the ABS ECU for Commercial Vehicle (상용차용 ABS ECU 개발을 위한 HILS 시스템 설계 및 구현)

  • Hwang, D.H.;Cho, J.M.;Sim, W.J.;Park, D.Y.;Kim, Y.J.;Joh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.609-611
    • /
    • 2000
  • ABS(Antilock Brake System), Prevents the wheels from "locking" and improve steering during braking. Currently, safety and environmental issues are a major concern in the automotive industry. ABS has become the vital brake system HILS (Hardware In-the-Loop Simulation) is an effective tool for design. performance evaluation and test of developed vehicle subsystems such as ABS. suspension. and steering systems. This paper describes a HILS model for an ABS/ASR application Also the design and implementation of HILS system for development of the ABS ECU(Electronic Centre) Unit) for commercial vehicle are presented.

  • PDF

Implementation of HILS System for Performance Test of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 구축)

  • Cho, J.M.;Hwang, D.H.;Park, D.Y.;Kim, Y.J.;Joh, J.S.;Park, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2564-2566
    • /
    • 2000
  • HILS(Hardware In-the-Loop Simulation) is an effective tool for design, performance evaluation and test of developed vehicle subsystems such as ABS(Antilock Brake System), suspension, and steering systems. This paper describes a HILS model for an ABS/ASR application. Also the implementation of HILS system for performance test of the ABS ECU(Electronic Control Unit) for commercial vehicles is presented.

  • PDF

The Evaluation of Dynamic Performance of Vehicle adopted All Steering System using Hardware In-the Loop Simulation (HILS를 이용한 전차륜 조향 시스템 장착 차량의 성능 평가)

  • Lee, Soo-Ho;Park, Tae-Won;Kim, Ki-Jeong;Chung, Ki-Hyun;Choi, Kyung-Hee;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1717-1725
    • /
    • 2008
  • In this paper, the HILS system is proposed for the AWS ECU of the bi-modal tram. Using the HILS of the AWS ECU, the behavior of the vehicle can be predicted and the reliability of the AWS system also can be verified. The hardware part of the HILS system includes the ECUs, hydraulic systems, steering linkages and sensors of the bi-modal tram. The software part of the HILS system contains the virtual vehicle model and sensor emulation. Driver input conditions, such as vehicle velocity and front steering angle, are provided to the ECUs by the software. The driving simulation of the bi-modal tram is carried out by the HILS. Also, the reliability of the AWS system, including the ECUs and hydraulic systems, is verified.

  • PDF

Development of the All Wheel Steering ECU for Articulated Vehicle (굴절차량을 위한 전차륜 조향 시스템 전자제어 장치 개발)

  • Kim, Ki-Jeong;Chung, Ki-Hyun;Choi, Kyung-Hee;Lee, Soo-Ho;Park, Tae-Won;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1231-1236
    • /
    • 2008
  • Since the bi-modal tram is too long so that the traditional steering system controlled only the first axle increases its turning radius, it is not suitable to the domestic road environment. In addition, it become hard to make fine parking with the traditional steering system. To resolve the problem, the bi-modal tram requires an all wheel steering system (AWS) that the second axle is controlled by the first axle's degree and the velocity of vehicle, and the third axle is steered by the articulation angle's degree and the velocity of degree. This paper addresses the factors for the AWS ECU design, the strategies to solve the problems, the core technologies for the implementation, and also the outcomes and analysis of the performance evaluation of implemented system.

  • PDF