• Title/Summary/Keyword: ECG signal

Search Result 564, Processing Time 0.026 seconds

P Wave Detection Algorithm through Adaptive Threshold and QRS Peak Variability (적응형 문턱치와 QRS피크 변화에 따른 P파 검출 알고리즘)

  • Cho, Ik-sung;Kim, Joo-Man;Lee, Wan-Jik;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1587-1595
    • /
    • 2016
  • P wave is cardiac parameters that represent the electrical and physiological characteristics, it is very important to diagnose atrial arrhythmia. However, It is very difficult to detect because of the small size compared to R wave and the various morphology. Several methods for detecting P wave has been proposed, such as frequency analysis and non-linear approach. However, in the case of conduction abnormality such as AV block or atrial arrhythmia, detection accuracy is at the lower level. We propose P wave detection algorithm through adaptive threshold and QRS peak variability. For this purpose, we detected Q, R, S wave from noise-free ECG signal through the preprocessing method. And then we classified three pattern of P wave by peak variability and detected adaptive window and threshold. The performance of P wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 92.60%.

An Implementation of Wireless Monitoring System for Health Care (헬스 케어를 위한 무선 모니터링 시스템 구현)

  • Eom, Sang-Hee;Nam, Jae-Hyun;Chang, Yong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.67-71
    • /
    • 2007
  • Recently, a health care need according to the increase of an advanced age population is increasing. The requirement about a health care monitoring is increasing rapidly from general people as well as patient. The requisition about a medical treatment technique and a medical treatment information service is the trend to be expanding. That can be possible minimizing the inconvenience of the patient to take a medical service and continuously monitoring the status of the patient to take a health care service. This paper discusses an implementation of wireless physiological signal monitoring system for health care. The system are composed of the sensor node and monitoring program. The sensor node has the physiological signal measurement part and the wireless communication part. The remote monitoring system has a monitoring program that are communicating the sensor node using bluetooth. The sensor node measured the ECG, pulse wave, blood pressure, Sp02, and heart rate.

  • PDF

Study on Electrically Powered Left Ventricular Circulation Assist Device (좌심실 전동순환 보조장치에 관한 연구)

  • Kim, Myoung-Nam;Lee, Jeong-Woo;Chang, Bong-Hyun;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.51-60
    • /
    • 2000
  • This paper outlines the development of a non-pulsatile axial flow type blood pump control system. By utilizing blood pressure and heart rate, this system can assist the left ventricle in controlling blood pressure and blood volume. The system is comprised of a blood pump, signal sensor, signal interface, and signal-processing component. A control algorithm is also proposed which can control non-pulsatile, continuous blood flow in the human circulatory system. To facilitate the control required for non-pulsatile blood pump in a physiological system, an experimental control rule was developed utilizing ECG and blood pressure data, both of which are easily detectable variables in the body. The system was then tested using a mock-up circulation system and we found that it is possible that this systems could be temporarily used in clinic.

  • PDF

A Study on the Data Compression of the Voice Signal using Multi Wavelet (다중 웨이브렛을 이용한 음성신호 데이터 압축에 관한 연구)

  • Kim, Tae-Hyung;Park, Jae-Woo;Yoon, Dong-Han;Noh, Seok-Ho;Cho, Ig-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.625-629
    • /
    • 2005
  • According to the rapid development of the information and communication technology, the demand on the efficient compression technology for the multimedia data is increased magnificently. In this Paper, we designed new compression algorithm structure using wavelet base for the compression of ECG signal and audible signal data. We examined the efficiency of the compression between 2-band structure and wavelet packet structure, and investigated the efficiency and reconstruction error by wavelet base function using Daubechies wavelet coefficient and Coiflet coefficient for each structure. Finally, data were compressed further more using Huffman code, and resultant Compression Rate(CR) and Percent Root Mean Square difference(PRD) were compared with those of existent DCT.

  • PDF

An Implementation of Wireless Monitoring System for Health Care (헬스 케어를 위한 무선 모니터링 시스템 구현)

  • Eom, Sang-Hee;Chang, Yong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1401-1407
    • /
    • 2008
  • Recently, a health care need according to the increase of an advanced age population is increasing. The requirement about a health care monitoring is increasing rapidly from general people as well as patient. The requisition about a medical treatment technique and a medical treatment information service is the trend to be expanding. That can be possible minimizing the inconvenience of the patient to take a medical service and continuously monitoring the status of the patient to take a health care service. This paper discusses an implementation of wireless physiological signal monitoring system for health care. The system are composed of the sensor node and monitoring program. The sensor node has the physiological signal measurement part and the wireless communication part. The remote monitoring system has a monitoring program that are communicating the sensor node using bluetooth. The sensor node measured the ECG, pulse wave, blood pressure, SpO2, and heart rate.

Evaluation by Contrast-Enhanced MR Imaging of the Lateral Border Zone in Reperfused Myocardial Infarction in a Cat Model

  • Ae Kyung Jeong;Sang Il Choi;Dong Hun Kim;Sung Bin Park;Seoung Soo Lee;Seong Hoon Choi;Tae-Hwan Lim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.21-27
    • /
    • 2001
  • Objective: To identify and evaluate the lateral border zone by comparing the size and distribution of the abnormal signal area demonstrated by MR imaging with the infarct area revealed by pathological examination in a reperfused myocardial infarction cat model. Materials and Methods: In eight cats, the left anterior descending coronary artery was occluded for 90 minutes, and this was followed by 90 minutes of reperfusion. ECG-triggered breath-hold turbo spin-echo T2-weighted MR images were initially obtained along the short axis of the heart before the administration of contrast media. After the injection of Gadomer-17 and Gadophrin-2, contrast-enhanced T1-weighted MR images were obtained for three hours. The size of the abnormal signal area seen on each image was compared with that of the infarct area after TTC staining. To assess ultrastructural changes in the myocardium at the infarct area, lateral border zone and normal myocardium, electron microscopic examination was performed. Results: The high signal area seen on T2-weighted images and the enhanced area seen on Gadomer-17-enhanced T1WI were larger than the enhanced area on Gadophrin-2-enhanced T1WI and the infarct area revealed by TTC staining; the difference was expressed as a percentage of the size of the total left ventricle mass (T2= 39.2 %; Gadomer-17 =37.25 % vs Gadophrin-2 = 29.6 %; TTC staining = 28.2 %; p < 0.05). The ultrastructural changes seen at the lateral border zone were compatible with reversible myocardial damage. Conclusion: In a reperfused myocardial infarction cat model, the presence and size of the lateral border zone can be determined by means of Gadomer-17- and Gadophrin-2-enhanced MR imaging.

  • PDF

Development of Self-trainer Fitness Wear Based on Silicone-MWCNT Sensor (실리콘-탄소나노튜브 센서 기반의 셀프트레이너 피트니스 웨어 개발)

  • Cho, Seong-Hun;Kim, Kyung-Mi;Cho, Ha-Kyung;Won, You-Seuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.493-503
    • /
    • 2018
  • Recently, as living standards have improved, many people are becoming more interested in health, and self-training is increasing through exercise to prevent and manage pre-illness. In general, an imbalance of muscles causes asymmetry of posture, which can cause various diseases by accompanying an adjustment force, circulation action, displacement of internal organs, etc.. In this study, the development of fitness software that can be self - training among smart wears has attracted considerable attention in recent years. In this study, a technology was proposed for the commercialization of self - trainer fitness wear by a simulation through Android - based applications. Self - trainer fitness software was developed by combining a conductive polymer, fashion design, sewing, and electric and electronic technology to monitor the unbalance of the muscles during exercise and make smart wear that can calibrate the asymmetry by oneself. In particular, a polymer sensor was fabricated by deriving the optimal MWCNT concentration, and the electrode signal was collected by attaching the electrode to the optimal position, where the electrode signal line using the conductive fiber was designed and attached to collect the signal. A signal module that converts the bio-signals collected through electrical signal conversion and transmits them using Bluetooth communication was designed and manufactured. Self-trainer fitness software that can be commercialized was developed by combining noise cancellation with Android-based self-training application using a software algorithm method.

A Measurement System for Color Environment-based Human Body Reaction (색채 환경 기반의 인체 반응 정보 측정 시스템)

  • Kim, Ji-Eon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.2
    • /
    • pp.59-65
    • /
    • 2016
  • The result of analyzing the cognitive reaction due to the color environment has been applied to various filed especially in medical field. Moreover, the study about the identification of patient's condition and examination the brain activity by collecting the bio-signal based on the color environment is being actively conducted. Even though, there were a variety of experiments by convention the color environment using a light or LED color, it still has a problem that affects the psychological information. Therefore, our proposed system using a HMD (Head Mounting display) to provide a completed color environment condition. This system uses the BMS(Biomedical System) to collect the biometric information which responds to the specific color condition and the human body response information can be measured by the development the Memory and Attention test on Mobile phone. The collection of Biometric information includes electro cardiogram(ECG), respiration, oxygen saturation (Sp02), Bio-impedance, blood pressure will store in the database. In addition, we can verify the result of the human body reaction in the color environment by Memory and Attention application. By utilizing the reaction of the human body information that is collected thought the proposed system, we can analyze the correlation between the physiological information and the color environment. And we also expect that this system can apply to the medical diagnosis and treatment. For future work, we will expand the system for prediction and treatment of Alzheimer disease by analyzing the visualization data through the proposed system. We will also do evaluation on the effectiveness of the system for using in the rehabilitation program.

Implementation of PTT Change Monitoring System According to Exercise Intensity (PTT기반 운동 강도 모니터링 시스템 구현)

  • Lee, Ji-Su;Kim, Dong-Chan;Lee, Gyeong-Tack;Kim, Gyeong-Seop;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • Cardiovascular disease is the leading cause of death worldwide and is caused by a variety of causes. The highest risk factor for cardiovascular disease is high blood pressure, which has no obvious symptoms, but if left untreated, it causes several complications. In order to treat hypertension, medication and regular exercise are required. In people with high blood pressure, excessive physical activity can put a great strain on the heart and lead to cardiovascular disease. Therefore, there is a need for an exercise intensity monitoring system through PTT measurement that can perform exercise at an appropriate intensity. In this study, we implemented a PTT change monitoring system according to exercise intensity by calculating PTT through ECG and PPG measurement. The implemented system differentiates the R-peak of the ECG and P-peak of the PPG, and calculates the PTT using the time difference between R-peak and P-peak. A running experiment was conducted to monitoring PTT change according to exercise intensity. As a result of the experiment, low intensity PTT is 0.313s, moderate is 0.220s, high is 0.188s, it was confirmed that the PTT decreased as the exercise increase increased.

DSP Embeded Hardware for Non-contact Bio-radar Heart and Respiration Rate Monitoring System (DSP를 이용한 비 접촉식 도플러 바이오 레이더 생체신호 모니터링 시스템 임베디드 하드웨어의 개발)

  • Kim, Jin-Seung;Jang, Byung-Jun;Kim, Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.97-104
    • /
    • 2010
  • In this paper, we provide an embedded type non-contact bio-radar heart and respiration rate monitoring system. We implemented the rate finding algorithm into the embedded system. The high-speed and reliable real-time signal processor is then tested. To avoid null-point data loss problem, we applied quadrature demodulation. Among several other combining techniques, we suggest arctangent demodulation for quadrature channel combining and DSP is used for real-time signal processing. We also suggest DC-offset compensation technique to preserve the wanted DC components of the IQ signals for accurate demodulation while keeping the dynamic range of the ADC lower. Using Texas Instrument C6711 series DSP and external 12Bit ADC, we implemented proper elliptic digital filter and autocorrelation detection algorithm for robust commercial hand held device.