• Title/Summary/Keyword: ECG monitoring

Search Result 257, Processing Time 0.025 seconds

Polynomial Approximation Approach to ECG Analysis and Tele-monitoring (다항식 근사를 이용한 심전도 분석 및 원격 모니터링)

  • Yu, Kee-Ho;Jeong, Gu-Young;Jung, Sung-Nam;No, Tae-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.42-47
    • /
    • 2001
  • Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. In this paper, we would like to introduce the signal processing for ECG analysis and the device made for wireless communication of ECG data. In the signal processing, the wavelet transform decomposes the ECG signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the polynomial approximation partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with the database, we can detect and classify the heart disease. The ECG detection device consists of amplifier, filters, A/D converter and RF module. After amplification and filtering, the ECG signal is fed through the A/D converter to be digitalized. The digital ECG data is transmitted to the personal computer through the RF transceiver module and serial port.

  • PDF

Implementation of Wearable Heart Activity Monitoring System having Modified Bipolar Electrode and Correlation Analysis with Clinical Electrocardiograph(ECG) (수정된 바이폴라 전극을 갖는 착용형 심장활동 모니터링 시스템 구현 및 임상 심전도와의 상관관계 분석)

  • Lee, Kang-Hwi;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Yang, Heui-Koung;Shin, Kun-Su;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1102-1108
    • /
    • 2008
  • Wearable physiological signal monitoring systems are regarded as an important sensing unit platforms in ubiquitous/mobile healthcare application. In this paper, we suggested the modified bipolar electrodes implemented on the portable heart activity monitoring system, which minimized the distance of electrodes formed on a attachable pad. The proposed electrode configuration is useful in mobile measurement environments, but has a disadvantage of reduced amplitude of the heart action potential. In order to overcome the shortcoming of the suggested electrode configuration, we implemented the amplifying circuit to increase the signal-gain and decrease the artifacts. For evaluations, we analyzed the specificity of measured cardiography using the proposed electrodes through the comparing of heart activity monitoring system with standard clinical ECG(lead2) by pearson correlation coefficients. The result showed that the average correlation coefficient is $0.903{\pm}0.036,\;0.873{\pm}0.072$ at V3, V4 chest lead position, respectively. Thus, the modified bipolar electrode is quite suitable to monitor the electrical activity of the heart in the situation of the mobile environment, and could be considered having high similarity with standard clinical ECG.

A study on WSN based ECG and body temperature measuring system for ubiquitous healthcare: 2. Vital signal monitoring software system (유비쿼터스 헬스케어를 위한 센서 네트워크 기반의 심전도 및 체온 측정 시스템: 2. 생체신호 모니터링 소프트웨어 시스템)

  • Lee, Dae-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.417-424
    • /
    • 2006
  • An ubiquitous healthcare monitoring system for elderly person at home was designed for continuous healthy monitoring of elderly person or patients. Human vital signals, such as ECG and body temperature, were monitored by terminal PC or PDA via ECG and temperature sensor nodes on the patient's body. From the ECG data, the heart rate, tachycardia, bradycardia and arrhythmia were diagnosed on the terminal PC or PDA to assist doctor's or nurse's aid or patient itself to monitor the patient's condition and give medical examination. Artificial judgement support system was designed in server computer and the system support a doctor or nurser for management or treatment of the patient. This system can be applied to vital signal monitoring system for solitude elderly person at self house or home health care service part. And this ubiquitous healthcare system can reduce the medical expenses in coming aging or aged society.

Development of Monitoring System for Biotelemetry Diagnosis of Multichannel ECG Data (다중채널 심전도 데이터의 원격진단을 위한 모니터링 시스템의 개발)

  • Jang, Won-Yeong;Jang, Won-Seok;Hong, Seung-Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 1991
  • This paper describes the implementation of a 3 channel ECG monitoring system. This system consists of an IBM-PC and simple accessory only. A PDTS (parallel data transmission system ) was designed to do monitor the data being operated with no effect and no exchange of software and hardware on the main transmission system in LOCAL mode. And it receives patient's ECG data from EPTS ( ECG processing and transmission system) of distant region. It provides on-line ECG waveform display, waveform storage, recall and editing the waveform. We have implemented the monitoring system by tw methods, and with system, we could directly monitor the EPTS and also receive the data from the remote ㅁe잉ion. This system was tested by experiments and examined its practical use.

  • PDF

A Centralized Monitoring System for Infant Incubators Using Bluetooth (블루투스를 이용한 신생아 인공 보육기의 중앙감시 장치)

  • Kim Joo-Sik;Ahn Hyun-Sik;Jeong Gu-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.1
    • /
    • pp.33-37
    • /
    • 2006
  • In this paper, we present a centralized monitoring system for infant incubator using Bluetooth. Conventional monitoring systems for incubators require large space and wire connection, which causes the spatial restrictions. To overcome this disadvantage, centralized monitoring system is proposed for infant incubators using Bluetooth. The implemented system consists mainly of transmission systems and receiver systems. There are temperature sensors, humidity sensors, ECG measurement units and Bluetooth modules in the transmission systems. For temperature, humidity and ECG data, the transmission systems acquire them from the measuring modules in the incubator and transmits the signals using Bluetooth. In the receiver system, users can see the status of the infant by accessing the central monitoring host computer. That is, one can monitor the information on the temperature and the humidity in the incubator and Infant's ECG without dependence to a conventional bulky system. Also, the system manager in the receiver system can maintain centralized monitoring of the situations in all incubators and infant. The developed system will be useful in remote diagnosis of infant incubator In various environments.

  • PDF

Developement of ECG monitoring system (심전도 감시장치의 개발에 관한 연구)

  • Kim, N.H.;Shim, W.H.;Kim, G.H.;Ra, S.W.;Lee, G.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.461-464
    • /
    • 1997
  • The ECG monitoring system had play a significant roll in ICU, CCU and operating room. By alarming the change of ECG wave form and heart rate, staff can control emergency state. The improve of recent digital technology is able to develope low cost and high quality ECG monitoring system. In this paper, we develope new monitoring system with low price microprocessor and control system.

  • PDF

A Fetal ECG Signal Monitoring System Using Digital Signal Processor (디지털 신호처리기를 사용한 태아심전도 신호 추출 시스템)

  • 박영철;조병모;김남현;김원기;박상휘;연대희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1444-1452
    • /
    • 1989
  • This paper describes the implementation of a real time fetal ECG monitoring system in which an adaptive multi-channel noise canceller is realized using the Texas Instruments TMS32020 progrmmmable ditital signal processor. An ECG signal from the electrode placed on the mother's abdomen and three ECGs from those on the chest are applied as the desired signal and the referened inputs, respectively, of the multi-channel filter. The coefficients of the filter are updated using the LMS algorithm such that the output of the multi-channel filter copies the maternal ECG embedded in the abdominal ECG. The enhanced fetal ECG is obtained by subtracting the filter output from the abdominal ECG, and the difference signal is recorded. Both off-line and on-line experimental results are presented to verify the effectiveness of the parameters for the digital signal processing algorithms and the prototype system.

  • PDF

Implementation and Evaluation of Chair-type ECG Monitoring System using Unconstraint Electrode (무구속 전극을 이용한 의자형 심전도 모니터링 시스템의 구현 및 평가)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.56-62
    • /
    • 2015
  • In this study, we implemented an unconstraint ECG monitoring system on a chair. Nowadays, modern people spend most of their time sitting on the chair. Therefore, it is necessary to have an unconstraint ECG monitoring system that can be used for a long time. The implemented system can perform measurement even with clothes on and it has great advantage on motion artifacts. A pair of unconstraint electrodes are placed on the back of the chair. Amplifier and filters are designed to remove motion artifacts, The baseline noise and power line noise are filtered and very low level of bio-signal is amplified to give a final measurement. Control unit and wireless transmission unit are implemented. Analog signal is converted into digital signal and transmits biological signal to the PC and the smart phone. Therefore continuous ECG monitoring in daily life is made possible. A comparison experiment between Ag / AgCl electrode and unconstraint electrode is conducted to evaluate the performance of the implemented system. As a result, we confirm our unconstraint system can be used for daily life ECG monitoring.

Zigbee based 1-ch ECG device with activity monitoring function (지그비를 기반으로 한 운동감시 기능을 가진 1채널 ECG장치 개발)

  • Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Jong;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.41-43
    • /
    • 2005
  • PDA-based monitoring is used to acquire continuously the patient's vital signs, including electrocardiography, activity, heart rate and $SpO_2$. In this paper, A biomedical signal acquisition device was designed using 3-axial MEMS accelerometer and 1-ch ECG amplifier, to have the function of monitoring activity and electrocardiography. The proposed system is composed of transmitter and receiver. Through the Zigbee communication, subject's biosignals can be transmitted in real-time to receiver, and transmitted data confirmed using PDA. The packet size used in this device was set not to exceed a maximum payload size of 116 byte. One packet consists of two segments. The transmission speed was 21 packet per second, 420 ECG samples per second, and 42 acceleration samples per second. The proposed method can be used to develop Activities of Daily Living(ADL} monitoring devices for the elderly or movement impaired people and enables patients to be monitored without any constraints. Also, this method will reduce medical costs in the aged society.

  • PDF

Design of Zigbee based Portable ECG monitoring system (지그비 기반의 휴대형 심전도 모니터링 시스템 설계)

  • Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Jong;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.51-53
    • /
    • 2006
  • This paper proposes a portable ECG monitoring system, which integrates uptodate PDA and RF communication technology. The aim of the study is to acquire the subject's biomedical signal without any constraint. It has two types of transmission mode, which are total signal transmission mode and HR(heart rate)/SC(step count) transmission mode. In audition, wireless communication technology uses Zigbee Wireless PAN and can work in low-power mode, which is one of the advantages of ZiBbee communication technology. The developed system is composed of a transmitter and a receiver. The transmitter has three-axial acceleration sensor. ECG amplifier and Zigbee communication controller. In total signal transmission mode, it can send data 50 packets per second whose transmission speed corresponds to 300 ECG samples and 60 acceleration samples. In HR/SG transmission mode, it can calculate heart rate from EEG data with 216 samples per second and step count from acceleration data and send a packet every cardiac cycle. The receiver forwards the received data to PDA, where the data can be stored and displayed. Therefore, the developed device enables to continuous monitoring for Activities of Daily Living(ADL). Also, this method will reduce medical costs in the aged society.

  • PDF