• Title/Summary/Keyword: EC-18

Search Result 476, Processing Time 0.031 seconds

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Yield and Missing Plant Rate of Panax ginseng Affected by the Annual Change in Physico-chemial Properties of Ginseng Cultivated Soil (토양이화학성(土壤理化學性)의 년차변화(年次變化)가 인삼수량(人蔘收量) 및 결주율(缺株率)에 미치는 영향(影響))

  • Lee, Il-Ho;Yuk, Chang-Soo;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 1989
  • The effect of soil physico-chemical properties of pre and post soil preparation and permanent bed period on growth and yield was analysed by two models of annual variation and percent annual change (PAC). 1. Aggregation, porosity, bulk density except moisture were significantly different in each year from preparation to the 6th year while all soil chemical properties except Mg were significantly different in each year. 2. Soil physical properties showed significant simple correlation with yield and negative with the missing plant rate in each year while the electroconductivity ($EC_5$) of the 4th year showed significant correlation with yield. 3. Yield showed significant positive correlation with the variation of aggregation in permanent bed period, and negative with variation and PAC of aggregation of preplanting soil and variation of moisture in permanent bed period. Missing plant rate was negatively correlated with porosity variation of preplanting soil and positively with PAC of aggregation in preplanting soil and of moisture in permanent bed period. 4. According to multiple regression between yield and soil physical properties, porosity of preplanting soil was in the greatest contribution. Among aggregations, the variation in permanent bed period was in the greatest contribution.

  • PDF

Relation of Organic Matter Content and Nitrogen Mineralization of Soils Collected from Pepper Cultivated Land (고추 재배 밭에서 채취한 토양의 유기물 함량과 질소 무기화 량의 관계)

  • Lee, Yejin;Lee, Seulbi;Kim, Yangmin;Song, Yosung;Lee, Deogbae
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.119-123
    • /
    • 2019
  • BACKGROUND: Estimation of soil nitrogen supply is essential to manage nitrogen fertilization in arable land. In Korea, nitrogen fertilization is recommended based on the soil organic matter content because it is difficult to assess nitrogen (N) mineralization of upland soils directly. In this study, the relationship between soil organic matter (SOM) content and N mineralization was investigated to explore the limitation of using SOM in predicting soil N mineralization. METHODS AND RESULTS: Soil samples from the 0 to 10 cm depth were collected from 18 individual pepper cultivated fields in Tae-an and Chung-yang provinces before fertilization. N mineralization in the soils was quantified using incubation for 70 days at $30^{\circ}C$. The mineralizable soil N (MSN) was positively correlated with SOM, and the relation equation between MSN and SOM was '$MSN(kg\;10a^{-1})=0.2933{\ast}SOM(g\;kg^{-1})+0.0897$ ($r^2=0.6224$, p<0.001)'. However, the differences of N mineralization among the soils with the similar concentrations of soil organic matter were about 3 to 4.6 times, suggesting that the other soil factors such as total N concentration or EC should affect N mineralization. CONCLUSION: We concluded that SOM alone could not reflect the capacity of soil to supply N that is used for recommendation of N fertilization rate. Therefore, other soil properties should be considered to improve N fertilization management in arable land for sustainable agriculture.

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF

Long term prognosis of patients who had a Fontan operation (폰탄 수술을 받은 환아들의 장기적 예후)

  • Kim, Hyun-Jung;Bae, Eun-Jung;Noh, Jung-Il;Choi, Jung-Yun;Yun, Yong-Su;Kim, Wong-Hwan;Lee, Jung-Yeul;Kim, Yong-Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • Purpose : This study assessed the long term survival rate and long term complications of patients who had a modified Fontan operation for functionally univentricular cardiac anomaly. Methods : Between June 1986 and December 2000, 302 patients with a functional single ventricle underwent surgical interventions and were followed up until February 2006. The mean follow-up period was $8.3{\pm}5.3years$ (range 3.5-18 years). Their median age was 2.4 years at the Fontan operation. The survival rate, the incidence and the risk factor of late complications were evaluated retrospectively. Results : The verall survival rate was 91 percent at 5 years and 87 percent at 10 years. In multivariate analysis, early calendar year of operation and significant regurgitation were risk factors of death. The surviving patients showed NYHA functional class I in 82 percent, class II in 15 percent, and class III in 3 percent. Redo Fontan operations were necessary in 8.8 percent of patients at average $12.8{\pm}3.6years$ after initial Fontan operation. The most common cause of Fontan conversion was atrial arrhythmia. The incidence of thromboembolic events was 9.3% and these complications were associated with the occurrence of atrial tachyarrhythmia. Supraventricular tachycardia including atrial flutter or fibrillation were reported on the follow-up examination by 11.2 percent of survivors after $8.4{\pm}5.6years$. Atriopulmonary connection showed higher rates of late tachycardia than lateral tunnel operation. Conclusions : This study revealed that the recent survival rate of Fontan type operation was satisfactory, but the occurrence of late complications after a Fontan type operation increased with the longer survival. There is a need for strict follow up and early treatment of late complications in patients who had a Fontan operation.

Investigation of Relationships between Soil Physico-chemical Properties and Topography in Jeonbuk Upland Fields (전북지역 밭 토양의 지형별 물리화학적 특성)

  • Ahn, Byung-Koo;Lee, Jae-Hyoung;Kim, Kab-Cheol;Choi, Dong-Chil;Lee, Jin-Ho;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • The properties of upland soils are much more dependent upon topography than those of paddy soils, and they give us very useful information to manage the upland fields. Therefore, we investigated the selected physical and chemical properties of upland soils at 84 and 150 topographic sampling sites, respectively. The topographic sites included 34.7% of local valley and fans, 18.7% of hilly and mountains, 20.0% of mountain foot slopes, 14.0% of alluvial plains, 8.0% of diluvium, and 4.6% of fluvio-marine deposits. Based on the investigation, soil textures in Jeonbuk upland fields were mostly sandy loam, sandy clay loam, clay loam, and clay soils, especially sandy clay loam soils were evenly distributed in all of the topographic sites. Soil slopes in the sites ranged from 0 to 15%, which showed an optimal condition for farm land. Soil bulk density and compaction values were from 1.19 to 1.24 g $cm^{-3}$ and from 12.1 to 13.9 mm, respectively. As comparing with the optimal conditions of soil chemical properties for upland soils proposed by National Institute of Agricultural Science and Technology, Korea, 37%, 42.7%, 93.0% of the sites were within optimum levels with soil pH, content of soil organic matter, and electrical conductivity, respectively. However, 64.0%, 47.3%, 48.7%, and 42.7% of the upland soils contained excess levels of exchangeable K, Ca, and Mg, and available phosphorus, respectively. In addition, the contents of heavy metals, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, in the Jeonbuk upland soils were much less than threshold levels.

The Growth Phase and Yield Difference of Kenaf (Hibiscus cannabinus L.) on Soil Salinity in Reclaimed Land (간척지에서 토양 염농도별 케나프의 생육반응 및 수량성)

  • Kang, Chan-Ho;Choi, Weon-Young;Yoo, Young-Jin;Choi, Kyu-Hwan;Kim, Hyo-Jin;Song, Young-Ju;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.511-520
    • /
    • 2014
  • Kenaf (Hibiscus cannabinus L.) was recognized as a potential source of forage. To reduce the production cost, we should insure large cultivation area. The one of the best candidate places to expand the useful kenaf production was 'Saemangeum' reclaimed land. To confirm the possibility of kenaf growth in reclaimed land, we seeding and cultivated the kenaf in 'Saemangeum'. The germination percentage of kenaf on 5.0 dS/m soil salinity was 18%. It is less 66% than that of 4.0 dS/m soil salinity and at 6.0 dS/m, the germination percentage of kenaf was under 10%. The growth and development of kenaf in reclaimed land grew worse with increasing soil salinity. The stem diameter which the most important factor that decide the value and yield of product was upper 2.6 cm when soil salinity maintained under 4.0 dS/m, but if soil salinity marked over 4.0 dS/m, the stem diameter of kenaf was drop under 2.0 cm and it deteriorate the number of leaves per plant by 20~46%. The necrosis on older tip and marginal leaves were noted approximately first month after seeding which was correlated directly with the salinity levels of reclaimed soil. Reduction of total yield was coincide with increasing levels of EC. If soil salinity over 5.0 dS/m, the amount of decreased by soil salinity was 51% than that of non-reclaimed region. The allowable soil salinity level of which could be maintained within 20% reduction rate was 4.2 dS/m. Consequently kenaf can be grown successfully with moderately saline soil condition. However, salt levels in excess of 4.2 dS/m severely have restricted plant growth and development and will result in significant yield reduction.

Fungicide Effects in Vitro and in Field Trials on Fusarium Head Blight of Wheat (국내 발생 밀 붉은곰팡이병에 대한 약제의 배지상의 효과 검정과 포장 방제 약제 선발)

  • Park, Jung-Mi;Shin, Sang-Hyun;Kang, Chun-Sik;Kim, Kyung-Hoon;Cho, Kwang-Min;Choi, Jae-Seong;Kim, Hyung-Moo;Park, Jong-Chul
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.194-200
    • /
    • 2012
  • The objective of this research was to select effective fungicides for the control of Fusarium head bight (FHB) of wheat. We tested fourteen commercial fungicides against FHB in the laboratory and under field. Fludioxonil FS, Fludioxonil SC, and Benomyl + Thiram WP highly inhibited the mycelial growth of Fusarium graminearum on the medium while Oxine-copper WP, Thiophanate-methyl WP, and Copper hydroxide WP were not effective against FHB. To verify the disease control in field condition, we selected four fungicides such as Fludioxonil SC, Captan WP, Difenoconazole + propiconazole EC, and Metconazole SC. Their control efficacy on FHB disease severity of wheat was examined after the fungicide treatment twice (30th April and 10th May, 2012) in the two field locations (Iksan and Gimje). With no treatment, FHB severity was 45% and 33.7% in Gimje and Iksan, respectively. FHB disease incidence after fungicide treatment was between 0.3% and 2.2% in Gimje, showing over 95% FHB disease control. FHB disease incidence of fungicide-treated sector in Iksan showed slightly higher than Gimje but the control value of fungicides exhibited 87-90%. No side effect of the chemicals was observed in fungicide treatment. These results showed that four fungicides were effective in the FHB disease control in wheat.

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF