Browse > Article
http://dx.doi.org/10.7740/kjcs.2014.59.4.511

The Growth Phase and Yield Difference of Kenaf (Hibiscus cannabinus L.) on Soil Salinity in Reclaimed Land  

Kang, Chan-Ho (Jeollabuk-do Agricultural Research and Extension Services)
Choi, Weon-Young (Department of rice and winter cereal crop, NICS, RDA)
Yoo, Young-Jin (Jeollabuk-do Agricultural Research and Extension Services)
Choi, Kyu-Hwan (Jeollabuk-do Agricultural Research and Extension Services)
Kim, Hyo-Jin (Jeollabuk-do Agricultural Research and Extension Services)
Song, Young-Ju (Jeollabuk-do Agricultural Research and Extension Services)
Kim, Chung-Kon (Jeollabuk-do Agricultural Research and Extension Services)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.59, no.4, 2014 , pp. 511-520 More about this Journal
Abstract
Kenaf (Hibiscus cannabinus L.) was recognized as a potential source of forage. To reduce the production cost, we should insure large cultivation area. The one of the best candidate places to expand the useful kenaf production was 'Saemangeum' reclaimed land. To confirm the possibility of kenaf growth in reclaimed land, we seeding and cultivated the kenaf in 'Saemangeum'. The germination percentage of kenaf on 5.0 dS/m soil salinity was 18%. It is less 66% than that of 4.0 dS/m soil salinity and at 6.0 dS/m, the germination percentage of kenaf was under 10%. The growth and development of kenaf in reclaimed land grew worse with increasing soil salinity. The stem diameter which the most important factor that decide the value and yield of product was upper 2.6 cm when soil salinity maintained under 4.0 dS/m, but if soil salinity marked over 4.0 dS/m, the stem diameter of kenaf was drop under 2.0 cm and it deteriorate the number of leaves per plant by 20~46%. The necrosis on older tip and marginal leaves were noted approximately first month after seeding which was correlated directly with the salinity levels of reclaimed soil. Reduction of total yield was coincide with increasing levels of EC. If soil salinity over 5.0 dS/m, the amount of decreased by soil salinity was 51% than that of non-reclaimed region. The allowable soil salinity level of which could be maintained within 20% reduction rate was 4.2 dS/m. Consequently kenaf can be grown successfully with moderately saline soil condition. However, salt levels in excess of 4.2 dS/m severely have restricted plant growth and development and will result in significant yield reduction.
Keywords
Kenaf (Hibiscus cannabinus L.); reclaimed land; salt tolerance;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ahlgren, G., H. Dotzenko, and A. Dotzenko. 1950. Kenaf a potential new crop. J. New York Bot. Gard. 51 : 77-80.
2 Ahmed, H. G., F. A. Iram, F. M. Anjum, A. S. Hamdy, F. M. Khaled, and F. Amr. 2010. The effect of pH on flavor formation and antioxidant activity of amino acid and sugars interaction products. JASMR, 5(2) : 131-139.
3 Bhardwaj, H. L., M. Rangappa, and C. L. III. Webber. 1995. Potential of kenaf as a forage. Proc. Int. Kenaf Assoc. Vonf. Irving, TX. 7 : 95-103.
4 Birasuren, B., N. Y. Kim, L. Jeon, and M. R. Kim. 2013. Evaluation of the Antioxidant Capacity and Phenolic Content of Agriophyllum pungens Seed Extracts from Mongolia. Prev. Nutr. Food Sci. 18(3) : 188-195.   과학기술학회마을   DOI
5 Bledsoe, V. K. 1999. Kenaf : Alternative fiber. Contryside Pub. Texas, USA.
6 Cahilly, G. M. 1967. Potential value of kenaf tops as a livestock feedstuff. Proc. first conf. kenaf for pulp. Gainsville, Fl. p 48 (Abstr.).
7 Cho, Y. J., S. S. Chun, J. H. Kim, and S. J. Yoon. 2005. Inhibition against Helicobacer pylori and biological activities by Rue (Rute graveolens L.) extracts. J. korean Soc. Food Sci. Nutr. 34(4) : 460-465.   DOI
8 Clark, T. F. and I. A. Wolff. 1969. A search for new fiber crops, XI. Compositional characteristics of illinois kenaf at several population densities and maturities. TAPPI 52 : 2606-2116.
9 Claussen Wilfried. 2005. Proline as a measure of stress in tomato plants. Plant Science 168 : 241-248.   DOI
10 Curtis, P. S., and A. Lauchli. 1985. Responses of kenaf to salt stress: Germination and vegetative growth. Crop Sci. 25 : 944-949.   DOI
11 Dao, T. H., W. Lonkerd, S. Rao, R. Meyer, and L. Pellack. 1989. Kenaf in a semi-arid environment and forage quality in Oklahoma. Argon, Abstr. p. 130.
12 Evans, D. W., and A. H. Hang. 1993. Kenaf in irrigated central washington. p409-410 : J. Janick and J. E. Simon(eds.), New crops. Wiley, New York.
13 Hollowell, J. E., B. S. Baldwin, and D. L. Lang. 1996. Evaluation of kenaf as a potential forage for the southern Unite States. Proc. 8th Ann. Inter. Kenaf Vonf. 34-38.
14 Hurse, L., and R. E. Bledsoe. 1989. Kenaf grown as a forage crop in Northeast Texas. Proc. Assoc. Advancement of Industria Crops Peoria, IL. p. 13 (Abstr.).
15 Kang, M. H., C. S. Choi, Z. S. Kim, H. K. Chung, K. S. Min, C. G. Park, and H. W. Park. 2002. Antioxidative activities of ethanol extract prepared form leaves, seed, branch, and aerial part of Crotalaria sessiflora. L. Korean. J. Food Sci. Technol. 34(4) : 1098-1102.
16 Killinger, G. B. 1964, Kenaf a potential paper-pulp for Florida. second Int. Kenaf Conf. Palm Beach, FL. p. 54-57.
17 Kim, S. M., Y. J. Jung, C. H. Pan, and B. H. Um. 2010. Antioxidant Activity of Methanol Extracts from the Genus Lespedeza. J Korean Soc Food Sci Nutr 39(5) : 769-775.   과학기술학회마을   DOI
18 Killinger, G. B. 1967, Potential uses of Kenaf (Hibiscus cannabinus L.). Fla. Soil Crop Sci. Soc. Proc. 27 : 4-11.
19 Killinger, G. B. 1969, Kenaf(Hibiscus cannabinus L.) a multi-use crop. Argon. J. 61 : 734-736.
20 Kim, B. G., E. R. Lee, and J. H. Ahn. 2012. Analysis of Flavonoid Contents and Expression of Flavonoid Biosynthetic Genes in Populus euramericana Guinier in Response to Abiotic Stress. J. Korean Soc. Appl. Biol. Chem. 55 : 141-145.
21 Lee, S. H., S. H. Yoo, S. I. Seol, Y. An, Y. S. Jung, and S. M. Lee. 2000. Assessment of salt damage for upland-crops in DAE-Ho reclaimed soil. Korean Journal of Environmental Agriculture 19(4) : 358-363.   과학기술학회마을
22 Lee S. O., H. J. Lee, M. H. Yu, H. G. Im, and I. S. Lee. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Uilung Island. Korea.
23 Lim, T. K., H. W. Park, Y. S. Hwang, and J. E. Choi. 2007. Potential role of polyphenolics and polyphenol oxidase on the induction of browning in ginseng roots. Korean J. Crop. Sci. 52(3) : 289-295.   과학기술학회마을
24 Maas, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current assassment. J. Plant Physiol. 13 : 553-565.
25 Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P. C. Struik, and Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. AJCS 4(8) : 580-585.
26 Phillips, W. A., S. Rao, and T. Dao. 1989. Nutritive value of immature whole plant kenaf and mature kenaf tops for growing rumminsnts. Proc. Assoc. Advancement of industrial Crops. Peoria, IL. p. 17-22.
27 Marklund, S. and G. Marklund. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and convenient assay for superoxide dismmutase. Eur. J. Biochem. 47. p 468.
28 Miyazaki, A., W. Agata, F. Kubota, Y. Matsuda, and X. Song. 1995. Bio-production and water cleaning by plant growth with floating culture system. II. Water cleaning effects by the growth of several plant species. 6th inter. Conf. of thr conservation and management of lakes Kasumigaura. 95(1) : 560-563.
29 Park, M. H., C. Choi, G. M. Son, B. J. An, and M. J. Bae. 2000. Effects of polyphenol compounds from Persimmon leaves (Diospyros kaki folium) on antiallergy. J. korean Soc. Food Sci. Nutr. 29(1) : 116-119.
30 Powell, G. W. and J. M. Wing. 1967. Kenaf as silage. Proc. First Conf. kenaf for pulp. Gainsville, Fl. p. 49 (Abstr.).
31 RRI. 2006. Agricultural complex development for upland & horticultural crops in the saemangeum reclaimed farmland. Res. Rtp. Rural Research Institute. p 1-504, Korea Rural Community & Agriculture Corporation.
32 RRI. 2007. Development method of the future agriculture complex in reclaimed land. Res. Rtp. Rural Research Institute. p 1-400, Korea Rural Community & Agriculture Corporation.
33 Ruenroengklin N., X. W. Duan, B. Yang, K. N. Prasad, G. P. Cheng, J. Zhong, and Y. M. Jiang. 2007. Effects of various temperature and pH values on antioxidant activity of Litchi antioxidants. Europe-Asia Symposium on Quality Management in Postharvest Systems.
34 Van Genuchten, M. T. and G. J. Hoffman. 1984. Analysis of crop salt tolerance. p 255-271. In: I shainberg and J. Shalhevet (eds.). soil salinity under irrigation: processand management. Ecologicalstudies 51. Springer-Verlag New York.
35 Son, J. G. 1994. Soil Salt Prediction Modeling for the Estimation of Irrigation Water Requirements for Dry Field Crops in Reclaimed Tidelands. Journal of the Korean Society of Agricultural Engineers 36(2) : 96-110.
36 Suriyajantratong, W., R. E. Tucker, R. E. Sigafus, and G. E. Mitchell Jr. 1973. Kenaf and rice straw for sheep. J. Anim. Sci. 37 : 1251-1254.
37 Swingle, R. S., A. R. Urias, J. C. Doyle, and R. L. Voigt. 1978. Chemical composition of kenaf forage and its digestibility by lambs and in vitro. J. Anim. Sci. 46 : 1346-1350.
38 Webber, C. L. III and V. K. Bledsoe. 1993. Kenaf : Production, harvesting, processing and products. p. 416-421. New crops. Wiley, New York.
39 Wing, J. M. 1967. Ensilability, acceptability and digestibility of kenaf. Feedstuffs 39 : 26.
40 Woo, N. R., T. S. Kim, C. G. Park, H. J. Seong, S. B. Ko, and M. H. Kang. 2005. Antioxidative and antimicrobial activities of extracts from different parts of Crotalaria sessiflora L. J. Korean Soc. Food Sci. Nutr. 34 : 948-952.   DOI